RAYMARIL 11615

APPENDIX A ANALYTICAL CHEMISTRY RESULTS

APPENDIX A-1
RESULTS OF SEDIMENT CHEMICAL ANALYSES: ORGANICS,
INORGANICS, SEM/AVS, TOC, GRAIN SIZE

Appendix A-1. Sediment Chemical Analysis Results for the Raymark Phase III Ecological Risk Assessment Investigation.

	C-1-SED-SMP	C-2-SED-SMP	C-3-SED-SIMP	D-1-SED-SIMP	D-2-SED-SMP	3-SED-SIMP	-SED-SMP	S-SED-SMP	D-6-SED-SMP
%TOC	1.30	3.10	4.10			3 8	1 8	3 2 2	1 % 8
Metals (mg/kg)		3.10	4.10	1.70	3.40	2.00	3.40	1.40	1.50
Arsenic	2.40	9.40	1 040						
Cadmium	0.22	0.31	9,10	3.30	6.50	2.90	5.90	1.60	3.80
Chromium	25.50	77,20	48.30	0.16 J	0.32	2.10	0.63	0.34	0.60
Copper	105	284	504	14.30	25.80	36.10	172	9.70	51.80
Lead	37.50	76.60	134	22.60	73.50	210	155	55.60	266
Mercury	0.21	0.59	0.80	7.30	29.10	87.60	56.30	37.70	41.90
Nickel	6.80	17.60	20.20	0.04	0.69	0.08	0.26	0.12	0.46
Silver	0.22	0.57	0.47	9.30	18.10	20.70	22.00	5.50	11,20
Zinc	60.40	169	243	0.04 U	0.16 J	0.85	0.41	0.52	0.28
Polyaromatic Hydrocarbons (PAHs)	(µa/ka)	1	243	41.50	118	178	158	56.70	162
,6,7-Trimethylnaphthalene	3.00	8.00	5.00	T					
-Methylnaphthalene	4.00	10.00	6.00	1.00 U	1.50 U	88.00	6.00	14.00	15.00
-Methylphenanthrene	20.00	58.00	22.00	1.00 U	1.50 U	77.00	12.00	13.00	8.00
.6-Dimethylnaphthalene	4.00	12.00	7.00	1.00 U	14.00	410	56.00	40.00	16.00
-Methylnaphthalene	9.00	18.00	14.00	1.00 U	1.50 U	95.00	11.00	11.00	13.00
cenaphthene	4.00	22.00	6.00	1.00 U	4.00	140	20.00	20.00	16.00
cenaphthylene	23.00	74.00	30.00	1.00 U	3.00	360	76.00	12.00	9.00
Inthracene	35.00	120	62.00	1.00 U	18.00	530	45.00	120	48.00
enzo(a)anthracene	130	390	220	3.00	39.00	2200	200	180	87.00
enzo(a)pyrene	120	380	190	9.00	130	5600	490	660	310
enzo(b)fluoranthene	110	510	160	7.00	99.00	4400	480	570	300
enzo(e)pyrene	98.00	310	160	8.00	93.00	6200	650	730	350
enzo(g,h,l)perylens	91.00	260	140	7.00 6.00	74.00	3200	360	380	200
enzo(k)fluoranthene	110	120	150		65,00	3000	330	330	180
lphenyl	3.00	6.00	6.00	6.00	77.00	1300	160	210	140
hrysene	120	380	180	1.00 U	1.50 U	210	6.00	13.00	5.00
ibenz(a,h)anthracene	18.00	58.00	28,00	8.00	110	4600	470	580	270
voranthene	190	650	310	1.00 U	14.00	690	74.00	100.00	44.00
Uorene	5.00	30.00	10.00	17.00	200	12000	910	1100	400
um PAHs (6 High Molecular Weight)1	639	1910	991	1.00 U	4.00	480	54.00	18.00	8.00
deno(1,2,3-cd)pyrene	97.00	290	150	58.00	973	28490	2534	3130	1411
m PAHs (7 Low Molecular Weight)2	184			6.00	71,00	3700	380	400	210
sphthalene	12.00	58.00 260	279	22.00	161	14920	1198	576	340
rylene	61.00	52.00	27.00	3.00	10.00	210	33.00	26.00	22.00
enanthrene	96.00 B	52.00 59.00 B	63.00	14.00	420	1200	110	120	87.00
rene	200	59.00 B	130 B	12.00 B	83.00 B	11000 B	770 B	200 B	150 B
m PAHs	1563	50.00	370 2446	18.00	180	12000	910	1100	490
			2440	134 B'=Below CRDL; a	1714	73690	6613	6947	3378

One-half the MDL taken where DQ = "U",

^{1 -} Sum of High Molecular Weight PAHs = Benzo(a)anthracene, Benzo(a)pyrene, Chrysene,

Dibenz(a,h)anthracene, Fluoranthene, and Perylene; Perylene not available for Reference

^{2 -} Sum of Low Molecular Weight PAHs = 2-Methylnaphthalene, Acenaphthene, Acenaphthylene, Anthracene, Fluorene, Naphthalene, and Phenanthrene.

^{3 -} Sum of Congeners x 2 does not include PCB077,104, and 154.

^{4 -} Dioxin = 2,3,7,8 TCDD Equivalent; see Appendix D-3.
5 - Reference Station - GM08 (SAIC, 1998). Total PCBs = 16 Congeners x 2.

Appendix A-1. Sediment Chemical Analysis Results for the Raymark Phase III Ecological Risk Assessment Investigation.

						· ·	, <u>,</u>		
r	ه ا	SED-SIMP	2-SED-SIMP	3-SED-SIMP	SED-SIMP	1-SED-SMP	SED-SMP	SED-SMP	
4	4-SED-FD	۱ %	%	, ž	X	1 %	💯	💯	
1	<u> </u>] 🔛	🙀	l 💥	l 🖼	i ii] 📈	📈	i §
ŀ	8 8	1 8	1 ½ g	₩ 8	∛ g	7 8	l 🥳 g	🥳 g	\$ 2
%TOC	2.80	9.30	28.30	7.00	22.00	4.10	14,30	13.90	5.86
Metals (mg/kg)	2.80	3.30	20.30	7,00	22.00	4.10	14.30	13.90	5.80
Arsenic			T 770		T	1 - 40	1 2 22		
Cadmium	8.90	13.60	7.70 0.03 U	6.50	8.30 0.05 U	2.60	9.40	4.30	17.90
Chromium	2.60			0.12 J	47.70	0.80	0.16 J	0.04 U	1.50 B
		139	53.00	20.80		36.40	390	47.70	231
Copper Lead	1560	278	130	36.60	99.40	106	761	174	661
	165	290	173	89.80	153	189	571	313	158
Mercury	2.50	0.88	0.27	0.15	0.31	0.19	0.55	0.39	1.20
Nickel Silver	34.20	26.40	17.10	17.50	19.80	11.50	65.90	23.80	37.40 E
	1.10	4.50	2.00	0.24	1.10	0.30	1.10	0.50	3.00
Zinc	780	191	85.50	115	86.60	191	982	378	292
Polyaromatic Hydrocarbons (PAHs) (L
1,6,7-Trimethylnaphthalene	54.00	17.00	10.00 U	27.00	7.50 U	23.00	26.00	100.00	L
1-Methylnaphthalene	21.00	32.00	34.00	24.00	17.00	21.00	54,00	220	L
1-Methylphenanthrene	69.00	87,00	130	250	83.00	240	260	350	L
2,6-Dimethylnaphthalene	42.00	23.00	10.00 U	23.00	7.50 U	33.00	78.00	170	
2-Methylnaphthalene	58.00	50.00	46.00	36.00	25.00	40.00	99.00	130	330 U
Acenaphthene	32.00	21.00	10.00 U	79.00	7.50 U	35.00	59.00	1100	330 U
Acenaphthylene	190	260	210	520	130	360	680	940	330 U
Anthracene	270	270	230	950	150	620	660	3200	330 U
Benzo(a)anthracene	870	730	660	3300	460	1800	2400	11000	190 J
Benzo(a)pyrene	840	950	800	2900	540	2000	3300	9700	230 J
Benzo(b)fluoranthene	990	1400	1100	4400	770	2600	4500	8800	400 XJ
Benzo(e)pyrene	540	820	980	2300	730	1500	3000	7600	
Benzo(g,h,i)perylene	490	760	890	1900	620	1400	3200	7200	74.00 J
Benzo(k)fluoranthene	330	410	930	970	690	710	2600	8500	390 XJ
Biphenyl	16.00	14.00	10,00 U	89.00	7.50 U	30.00	35.00	340	
Chrysene	770	970	1100	3300	750	1800	2800	8700	220 J
Dibenz(a,h)anthracene	120	170	170	460	120	320	640	1500	330 U
Fluoranthene	1200	1600	1700	6200	1200	3200	5700	21000	330 J
Fluorene	24.00	28.00	10.00 U	140	7.50 U	78.00	64.00	920	330 U
Sum PAHs (6 High Molecular Weight)1	3980	4590	4500	16790	3180	9540	15520	54300	1300
Indeno(1,2,3-cd)pyrene	570	860	1000	2400	710	1600	3600	8500	110 J
Sum PAHs (7 Low Molecular Weight)2	1024	1693	1443	4266	906	2695	3862	14240	2100
Naphthalene	60.00	84.00	67.00	41.00	38.00	62.00	200	150	330 U
Perylene	180	170	160	630	110	420	680	2400	
Phenanthrene	390 B	980 B	870 B	2500 B	550 B	1500 B	2100 B	7800 B	120 J
Pyrene	1200	1700	1600	6200	1100	3300	5600	17000	410 J
Sum PAHs	9326	12406	12727	39639	8831	23692	42335	127320	7094
	DO = Data Qualifi							12.020	,,,,,,

DQ = Data Qualifier; "U"=Undetected; "J"=Estimated; "B"=Below CRDL; and "NA"=Not Analyzed.

One-half the MDL taken where DQ = "U".

^{1 -} Sum of High Molecular Weight PAHs = Benzo(a)enthracene, Benzo(a)pyrene, Chrysene,

Dibenz(a,h)anthracene, Fluoranthene, and Perylene; Perylene not available for Reference

^{2 -} Sum of Low Molecular Weight PAHs = 2-Methylnephthelene, Acenephthene, Acenephthylene, Anthracene,

Fluorene, Naphthelene, and Phenenthrene.

^{3 -} Sum of Congeners x 2 does not include PCB077,104, and 154.

^{4 -} Dioxin = 2,3,7,8 TCDD Equivalent; see Appendix D-3.

^{5 -} Reference Station - GM08 (SAIC, 1998). Total PCBs = 16 Congeners x 2.

Appendix A-1. Sediment Chemical Analysis Results for the Raymark Phase III Ecological Risk Assessment Investigation.

									3
	C-1-SED-SIMP	2-SED-SMP	3-SED-SMP	ED-SIMP	SED-SMP	3-SED-SMP	1	3	38
	🕁	ا با	l á	ĺå	يُوَ	ă	SED-SM	1 3	1 %
	9 _	7] 7	9		9	%	S-SED-SIM	99 (
	1 5 8	1 3 8	138	1 2 8	1 2 8	1 2 2	1 7 8	1 8 8	1 2 8
Organochiorine Pesticides (µg/kg)								 	1 9 9
Aldrin	0.39 U	0.55 U	0.60 U	0.40 U	0.65 U	0.33 U	0.55 U	0.42 U	0.40 U
Alpha-BHC	0.39 U	0.55 U	0.60 U	0.40 U	0.65 U	0.33 U	0.55 U	0.42 U	0.40 U
Alpha-Chlordane	0.39 U	0.55 U	0.60 U	0.40 U	0.65 U	0.33 U	0.55 U	0.42 U	0.40 U
Beta-BHC	0.39 U	0.55 U	0.60 U	0.40 U	0.65 U	0.33 U	0.55 U	0.42 U	0.40 U
Delta-BHC	0.39 U	0.55 U	0.60 U	0.40 U	0.65 U	0.33 U	0.55 U	0.42 U	0.40 U
Dieldrin Endosulfan f	0.39 U	0.55 U	0.60 U	0.40 U	0.65 U	0.33 U	0.55 U	0.42 U	0.40 U
Endosulfan II	0.39 U	0.55 U	0.60 U	0.40 U	0.65 U	0.33 U	0.55 U	0.42 U	0.40 U
Endosulfan Sulfate	0.39 U	0.55 U	0.60 U	0.40 U	0.85 U	1.90	0.55 U	0.42 U	0.40 U
Endrin	0.39 U	0.55 U	0.60 U	0.40 U	0.65 U	0.33 U	0.55 U	0.42 U	0.40 U
Endrin Aldehyde	0.39 U	0.55 U	0.60 U	0.40 U	0.65 U	0.33 U	0.55 Ü	0.42 U	0.40 U
Gamma-BHC(Lindane)	0.39 U	NA NA	NA NA	NA_	NA.	NA NA	NA.	NA NA	NA NA
Gamma-Chlordane		0.55 U	0.60 U	0.40 U	0.65 U	0.33 U	0.55 U	0.42 U	0.40 U
Heptachlor	0.39 U	0.55 U	0.60 U	0.40 U	0.65 U	0.33 U	0.55 U	0.42 U	0.40 U
Heptachlor Epoxide	0.39 U	0.55 U	0.60 U	0.40 U	0.65 U	0.33 U	0.55 U	0.42 U	0.40 U
Hexachlorobenzena	0.39 U	0.55 U	0.60 U	0.40 U	0.65 U	0.33 U	0.55 U	0.42 U	0.40 U
Methoxychlor	1.90 U	2.85 U	2.90 U	2.00 U	3.25 U	0.33 U	0.55 U	0.42 U	0.40 U
Mirex	0.39 U	0.55 U	0.60 U	0.40 U	0.65 U	1.65 U	2.85 U	2.05 U	2.00 U
o.p'-DDD	0.39 U	0.55 U	0.60 U	0.40 U	0.65 U	0.33 U	0.55 U	0.42 U	0.40 U
o.pDDE	0.39 U	0.55 U	0.60 U	0.40 U	0.65 U	0.33 U	0.55 U	0.42 U	0.40 U
o,p'-DDT	0.39 U	0.55 U	0.60 U	0.40 U	0.65 U	0.33 U	0.55 U	0.42 U	0.40 U
b'b,-DD0	0.39 U	3.80	0.60 U	0.40 U	0.65 U	0.33 U	3.70	20.00	1.80
p,p:-DDE	0.39 U	0.55 U	0.60 U	0.40 U	0.65 U	0.33 U	0.55 U	0.42 U	0.40 U
p.p'-DOT	0.39 U	0.55 U	0.60 U	0.40 U	0.65 U	0.33 U	0.55 U	0.42 U	0.40 U
Toxaphene Polychlorinated Biphenyls (PCBs) (¿	4.80 U	7.00 U	7.00 U	5.00 U	8.00 U	4.10 U	7.00 U	5.00 U	5.00 U
POTYCHIOMISTEO Biphenyts (PCBs) (¿ PCB008		1							
PC8018	0.39 U	0.55 U	0.60 U	0.40 U	0.65 U	0.33 U	0.55 U	320	0.40 U
PC8028	0.39 U	0.55 U	0.60 U	0.40 U	0.65 U	0.33 U	0.5\$ U	20.50 U	0.40 U
PCB029	0.39 U	0.55 U	0.60 U	0.40 U	0.65 U	0.33 U	2.50	41.00	1.30
PCB044	0.39 U	0.55 U	0.60 U	9.40 U	0.65 U	0.33 U	0.55 U	20.50 U	0.40 Ü
PCB050	0.39 U	0.55 U	0.60 U	0.40 U	0.65 U	0.33 U	4.50	230	0.40 U
PCB052	0.39 U	0.55 U	0.60 U	0.40 U	0.65 U	0.33 U	0.55 U	20.50 U	0.40 U
PC8066	0.39 U	0.55 U	0.60 U	0.40 U	0.65 U	0.33 U	3.60	1000	2.30
PC8077	0.39 U	3.50	0.60 U	0.40 U	0.65 U	2.90 4.70	8.20	20.50 U	0.40 U
CB087	0.39 U	0.55 U	0.60 U	0.40 U	0.65 U	0.33 U	0.55 U	20.50 U	0.40 U
PCB101	4.70	9.70	0.60 U	0.40 U	0.65 U	0.33 U	17.00	20.50 U	0.40 U
2CB104	0.39 U	0.55 U	0.60 U	0.40 U	0.65 U	0.33 U		160	0.40 U
PCB105	0.95	4.50	2.20	0.40 U	0.65 U	1.20	0.55 U 2.60	20.50 U	0.40 U
CB118	0.97	1.80	0.60 U	0.40 U	0.65 U	5.10	3.50	20.50 U	1.70 0.40 U
PCB126	039 U	2.40	3.20	0.40 U	0.65 U	0.33 U	1.30	20.50 U	0.40 U
PCB128	0.39 U	0.55 U	0.60 U	0.40 U	0.65 U	0.33 U	0.55 U	20.50 U	0.40 U
CB138	0.94	2.20	0.60 U	0.40 U	0.65 U	1.70	4.10	150	1.40
CB153	1.10	4.70	0.60 U	0.40 U	0.65 U	1.10	5.00	150	2.20
CB154	0.39 U	0.55 U	0.60 U	0.40 U	0.65 U	2.00	0.55 U	20.50 U	0.40 U
C8170 C8180	0.39 U	12.00	0.60 U	0.40 U	0.65 U	2.90	0.55 U	20.50 U	0.40 U
CB180 CB187	2.40	7.40	8.00	0.40 U	0.65 U	0.33 U	9.00	49.00	3.90
CB187	1.50	6.40	4.90	0.40 U	0.65 U	0.33 U	5.10	20.50 U	3.20
CB195	0.39 U	1.60	0.60 U	0.40 U	0.65 U	1.40	1.90	20.50 U	1.20
CB200	0.39 U	4.20	0.60 U	0.40 U	0.65 U	0.33 U	0.55 U	20.50 U	1.10
CB206	0.39 U	0.55 U	0.60 U	0.40 U	0.65 U	0.33 U	0.55 U	20.50 U	0.40 U
CB209	0.39 U	6.50	0.60 U	0.40 U	0.65 U	0.33 U	20.00	20.50 U	4.00
otal PCBs (Sum of Congeners x 2) ²	38.21	159	0.80 U	0.40 U	3.00	0.33 U	0.55 U	20.50 U	0.40 U
ioxins (ng/kg)		138	60.60	19.20	35.90	43.65	188	5055	55.80
loxin-Mammal	1								
ioxin-Fish	4.61	13.36	10.04	2.34	2.83	25.62	13.36	227	5.07
loxin-Bird	6.34	11.82 22.76	9.17 19.57	2.23	2.56	23.38 37.49	12.12	223	4.64
					3.71		25.36	324	

DQ = Deta Qualifier; "U"=Undetected; "J"=Estimated; "B"=Below CRDL; and "NA"=Not Analyzed.

One-half the MDL taken where DQ = "U".

^{1 -} Sum of High Molecular Weight PAHs = Benzo(a)anthracene, Benzo(a)pyrene, Chrysene,

Dibenz(a,h)anthracene, Fluoranthene, and Perylene; Perylene not available for Reference

^{2 -} Sum of Low Molecular Weight PAHs = 2-Methylnaphthelene, Acenaphthene, Acenaphthylene, Anthracene,

Fluorene, Naphthalene, and Phenanthrene.

^{3 -} Sum of Congeners x 2 does not include PCB077,104, and 154.

^{4 -} Dioxin = 2.3,7 8 TCDD Equivalent: see Appendix D-3.

^{5 -} Reference Station - GM08 (SAIC, 1998). Total PCBs = 16 Congeners x 2.

Appendix A-1. Sediment Chemical Analysis Results for the Raymark Phase III Ecological Risk Assessment Investigation.

		_	Γ Λ		Λ .		Ι Δ		
	م ا	:1-SED-SAMP	2-SED-SMP	3	4-SED-SIM	1-SED-SIMP	SED-SIMP	3-SED-SIMP	ا ۔
	1 3	, a	%	3-SED-SAM	l %	l %	1 %	%	\$
	l m)ii	12	l ji	l 🖫	📆	1 1 2	133	<u> </u>
	0-6-SED-FD	<u> </u>	🐇 g	<u> </u>	* 8	i g	ه ۱۸	ž g	2 8
	Δδ	ψō	ے شا	w a	<u> </u>	ے ک	1 4 0	<u> </u>	4 0
Organochlorine Pesticides (µg/kg)	L		 						
Aldrin	0.55 U	1.25 U	4.10 U	0.90 U	3.05 U	0.90 U	2.70 U	3.60 U	
Alpha-BHC	0.55 U	1.25 U	4.10 U	0.90 U	3.05 U	0.90 U	2.70 U	3.60 U	
Alpha-Chlordane	0.55 U	1.25 U	4.10 U	0.90 U	3.05 U	0.90 U	2.70 U	3.60 U	
Beta-BHC	0.55 U	1.25 U	4.10 U	0.90 U	3.05 U	0.90 U	2.70 U	3.60 U	
Delta-BHC	0.55 U	1.25 U	4.10 U	0.90 U	3.05 U	0.90 U	2.70 U	3.60 U	
Dieldrin	0.55 U	1.25 U	4.10 U	0.90 U	3.05 U	0.90 U	2.70 U	3.60 U	
Endosulfan I	0.55 U	1.25 U	4.10 U	0.90 U	3.05 U	0.90 U	2.70 U	3,60 U	
Endosulfan II	0.55 U	1.25 U	4.10 U	0.90 U	3.05 U	0.90 U	2.70 U	3.60 U	
Endosulfan Sulfate	0.55 U	1.25 U	4.10 U	0.90 U	3.05 U	0.90 U	2.70 U	3.60 U	
Endrin		1.25 U	4.10 U	0.90 U	3.05 U	0.90 U	2.70 U	3.60 U	-
Endrin Aldehyde					J.US U			3.60 U	
	NA NA	NA.	NA NA	NA.		NA NA	NA NA		
Gamma-BHC(Lindane)	0.55 U	1.25 U	4.10 U	0.90 U	3.05 U	0.90 U	2.70 Ū	3.60 U	
Garnma-Chlordane	0.55 U	1.25 U	4.10 U	0.90 U	3.05 U	0.90 U	2.70 U	3.60 U	
Heptachlor	0.55 U	1.25 U	4.10 U	0.90 U	3.05 U	0.90 U	2.70 U	3.60 U	
Heptachlor Epoxide	0.55 U	1.25 U	4.10 U	0.90 U	3.05 U	0.90 U	2.70 U	3.60 U	
Hexachlorobenzene	0.55 U	11.00	4,10 U	0.90 U	3.05 U	0.90 U	2.70 U	3.60 U	
Methoxychior	2.70 U	6.00 U	20.50 U	4.65 U	15.00 U	4.45 U	13.50 U	18.00 U	
Mirex	0.55 U	1.25 U	4.10 U	0.90 U	3.05 U	0.90 U	2.70 U	3.60 U	
o.p-DDD	0.55 U	125 U	4.10 U	0.90 U	3.05 U	0.90 U	2.70 U	3.60 U	
o,p'-DDE	0.55 U	1.25 U	4.10 U	0.90 U	3.05 U	7.30	270 U	3.60 U	
o,p'-DDT	0.55 U	1.25 U	4.10 U	0.90 U	3.05 U	0.90 U	2.70 U	3.60 U	<u> </u>
p.p'-ODO	0.55 U	1.25 U	23.00	0.90 U	24.00	36.00	70.00	120	
p.p -DDE	0.55 U	1.25 U	4.10 U	4.00	3.05 U	0.90 U	30.00	99.00	
p,p·DDT	0.55 U	1.25 U	4.10 U	0.90 U	3.05 U	4.20	24.00		
Toxaphene	7.00 U	15.50 U							
Polychlorinated Biphenyls (PCBs) (us		15.50 U	50.00 U	11.50 U	38.00 U	11.00 U	33.50 U	45.00 U	
					···			,	
PCB008	0.55 U	170	4.10 U	0.90 U	3.05 U	0.90 U	2.70 U	3.60 U	ļl
PCB018	0.55 U	3000	4.10 U	0.90 U	3.05 U	0.90 U	2.70 U	3.60 U	
PCB028	0.55 U	1700	28.00	0.90 U	3.05 U	0.90 U	2.70 U	3.60 U	
PCB029	0.55 U	60.00 U	4.10 U	0.90 U	3.05 U	0.90 U	2.70 U	3.60 U	
PCB044	0.55 U	820	19.00	0.90 U	15.00	0.90 U	2.70 U	25.00	
PCB050	0.55 U	60.00 U	4.10 U	0.90 U	3.05 U	0.90 U	2.70 U	3.60 U	
PC8052	0.55 U	2000	23.00	0.90 U	9.60	0.90 U	2.70 U	3.60 U	
PCB066	1.90	2100	54.00	0.90 U	32.00	0.90 U	5.40	3.60 U	
PCB077	0.55 U	60.00 U	4.10 U	0.90 Lf	3.05 U	0.90 U	2.70 U	3.60 U	
PCB087	0.55 U	680	20.00	0.90 U	3.05 U	0.90 Ü	2.70 U	9.40	
PCB101	0.55 U	2700	53.00	0.90 U	18.00	0.90 U	170	16.00	
PCB104	0.55 U	60.00 U	4.10 U	0.90 U	3.05 U	0.90 U	2.70 U	3.60 U	
PCB105	0.55 U	560	38.00	0.90 U	16.00	13.00	28.00	98.00	
PCB118	0.55 U	1600	36.00	0.90 U	14.00	0.90 U	24.00	33.00	
PCB126	0.55 U	140	4.10 U	0.90 U	3.05 U	0.90 U	9.30	18.00	
PCB128	0.55 U	520	4.10 U	0.90 U	3.05 U	0.90 U			
PCB128		1900					2.14	3.60 U	
PCB153			42.00	5.80	15.00	9.20	21.00	20.00	
PCB153	0.56 U	1500	37.00	0.40	12.00	6.70	23.00	45.00	
	0.55 U	60.00 U	4.10 U	0.90 U	3.05 U	0.90 U	2.70 U	3.60 U	
PC8170	0.55 U	400	4.10 U	0.90 U	3.05 U	0.90 U	2.70 U	3.60 U	
PC8180	7.70	330	21.00	0.90 U	12.00	17.00	59.00	3.60 U	
PCB187	3.50	150	13.00	13.00	9.70	16.00	40,00	29.00	
PCB188	1.50	210	4.10 U	0.90 U	3.05 U	5.80	11.00	20.00	
PCB195	2.00	60.00 U	4.10 U	0.90 U	3.05 U	4.50	5.40	3.60 U	
PCB200	0.55 U	60,00 Ü	4.10 U	0.90 U	3.05 U	0.90 U	2.70 U	3.60 U	
PCB206	5.10	60.00 U	16.00	0.90 U	3.05 U	30,00	31.00	15.00	
PCB209	0.55 U	60.00 U	4.10 U	0.90 U	3.05 U	0.90 U	2.70 U	3,60 U	
Total PCBs (Sum of Congeners x 2)*	63.20	41680	886	92.20	392	231	919	750	75.17
Dioxins ⁴ (ng/kg)				-5.40		431	1 -12	/30	/3.1/
Dioxin-Mammal	T								
	13.50	231	32.70	14.46	36.44	13,54	43.36	18.63	9.07
Dioxin-Fish	13.23	203	29.48	14.11	32.37	12.09	35.08	15.29	7.57
Oloxin-Bird	22.14	440	59.09	23.75	47.03	26.33	66.96	35.14	16.75
	DO D-1-0-45		d: 'J'=Estimated						

DQ = Date Qualifier: "U"=Undetected; "J"=Estimated; "B"=Below CRDL; and "NA"=Not Analyzed.

One-half the MDL taken where DQ = "U",

^{1 -} Sum of High Molecular Weight PAHs = Benzo(a)anthracene, Benzo(a)pyrene, Chrysene,

Dibenz(a,h)anthracene, Fluoranthene, and Perylene; Perylene not available for Reference

^{2 -} Sum of Low Molecular Weight PAHs = 2-Methylnaphthalane, Acenaphthane, Acenaphthylene, Anthracene,

Fluorene, Naphthalene, and Phenanthrene.

^{3 -} Sirm of Congeners x 2 does not include PCB077,104, aixid 154.

 $^{4 \}times D londo < 2.0,7,8 \; TCDD F quivalent, see Appendix <math display="inline">D/3$.

^{5 -} Heference Station - GM06 (SAIC, 1998). Total PCBs = 16 Congeners x 2.

Appendix A-1. Sediment Chemical Analysis Results for the Raymark Phase III Ecological Risk Assessment Investigation.

	C-1-SED-SMP DQ	C-2-SED-SMP DQ	C-3-SED-SMP DQ	D-1-SED-SMP DQ	D-2-SED-SMP	D-3-SED-SMP	D-4-SED-SMP	D-5-SED-SMP	D-6-SED-SMP
AVS/SEM (µmol/g dry wt)						I			
Acid Volatile Sulfide	11.81	16.22	0.30	<0.1	4.29	1.79	13.95	2.62	5.68
Cadmium	1.00E-03 J	1.00E-03 J	2.00E-03	1.00E-03 J	2.00E-03 J	9.00E-03	4.00E-03	2.00E-03	3.00E-03
Copper	0.05 J	0.12 J	0.39 J	0.06 J	0.06 J	0.76 J	0.57 J	0.10 J	0.07 J
Lead	0.07 J	0.15 J	0.26 J	0.02 J	0.05 J	0.29 J	0.17 J	0.13 J	0.09 J
Nickel	0.05 J	0.09 J	0.08 J	0.05 J	0.08 J	0.28 J	0.63 J	0.37 J	0.35 J
SEM-AVS	-9.49	-10.99	4.64	n/a	-1.36	5.23	-12.48	-0.32	-1.57
SEWAVS	0.20	0.32	16.45	n/a	0.68	3.92	0.11	0.88	0.72
Zinc	2.14 J	4.87 J	4.21 J	0.55 J	2.75 J	5.68 J	0.10 J	1.70 J	3.60 J
Grain Size (%)				•	•	•	•		
Clay	0.30	1.20	1.00	0.20	0.70	1 0	1.10	7 6	0.20
Sand	78.60	43.70	26.90	59.40	31.20	98.30	40.70	93.20	79.00
Silt	21.10	55.10	72.10	40.40	68.10	1.70	58.10	6.70	20.80

DQ = Data Qualifier: "U"=Undetected; "J"=Estimated; "B"=Below CRDL; and "NA"=Not Analyzed.

One-half the MDL taken where DQ = "U".

1 - Sum of High Molecular Weight PAHs = Benzo(a)anthracene, Benzo(a)pyrene, Chrysene,

Dibenz(a,h)enthracene, Fluoranthene, and Perylene; Perylene not available for Reference

2 - Sum of Low Molecular Weight PAHs = 2-Methylnephthalene, Acenaphthene, Acenaphthylene, Anthracene,

Fluorene, Naphthalene, and Phenanthrene.

3 - Sum of Congeners x 2 does not include PCB077,104, and 154.

4 - Dioxin = 2,3,7,8 TCDD Equivalent; see Appendix D-3.

5 - Reference Station - GM08 (SAIC, 1998). Total PCBs = 16 Congeners x 2.

Appendix A-1. Sediment Chemical Analysis Results for the Raymark Phase III Ecological Risk Assessment Investigation.

	D-6-SED-FD	E-1-SED-SIMP DO	E-2-SED-SMP	E-3-SED-SMIP DQ	E-4-SED-SAIP DO	F-1-SED-SMP	F-2-SED-SMP DQ	F-3-SED-SMP	Reference ⁵ DO
mol/g dry wt) اAV\$/SEM		T				1	1	· ·	1
Acid Volatile Suffide	12.52	22.22	16.77	<0.1	13.38	124	83.45	27.01	9.40
Cadmium	7.00E-03	*****	*****	******	4.00E-03	0.02	0.05	0.02	0.01
Copper	0.17 J	1.80 J	2.33 J	1.05 J	2.62 J	0.30 J	0.11 J	0.78 J	0.32
Lead	0.27 J	1.19 J	0.48 J	0.31 J	0.55 J	0.68 J	1.64 J	1.31 J	0.41
Nickel	0.54 J	1.63 J	0.31 J	0.29 J	0.45 J	0.34 J	0.79 J	1.12 J	0.15
SEM-AVS	-2.68	-2.38	0.35	n/a	-6.25	-112,11	-63.73	-5.78	-4.87
SEMAVS	0.79	0.89	1.02	n/e	0.53	0.10	0.24	0.79	0.48
Zinc	8.85 J	15.21 J	14.00 J	4.91 J	3.50 J	10.97 J	17,13 J	18.01 J	3.63
Grain Size (%)							· ······		Î
Clay	0.50	1.10	1,70	0.80	2.10	0.40	2.00	1.10	0
Sand	41.30	7.30	5.90	40.50	4.60	80.90	18.40	56.70	78.33
Silt	58.20	91.60	92.50	56.70	93.30	18.70	79.60	42.20	21.67

DQ = Data Qualifier: "U"=Undetected; "J"=Estimated; "B"=Below CRDL; and "NA"=Not Analyzed.

One-half the MDL taken where DQ = "U",

1 - Sum of High Molecular Weight PAHs = Benzo(a)anthracene, Benzo(a)pyrene, Chrysene,

Dibenz(a,h)sinthracene, Fluoranthene, and Perylene; Perylene not available for Reference

2 - Sum of Low Molecular Weight PAHs = 2-Methylnaphthalene, Acenaphthene, Acenaphthylene, Anthracene,

Fluorene, Naphthalene, and Phenanthrene.

3 - Sum of Congeners x 2 does not include PCB077,104, and 154.

4 - Dioxin = 2,3,7,8 TCDD Equivalent; see Appendix D-3.

5 - Reference Station - GM06 (SAIC, 1996). Total PCBs = 16 Congeners x 2.

APPENDIX A-2 RESULTS OF POREWATER CHEMICAL ANALYSES: METALS

Appendix A-2. Sediment Porewater Analysis Results for the Raymark Phase III Ecological Risk Assessment Investigation.

														_				1			5 + DIII		E 4 5141	50	F 2 DW	00	E A DW	200	E.I.DW	00	E-2-PW	no	F-3-PW	DQ.	Reference DO
	C-1-PW	DQ	C-2-PW	DQ	C-3-PW	00	D-1-PW	DQ	D-2-PW	DQ	D-3-PW	00	D-4-PW	_DQ	D-5-PW	DQ	D-6-PW	DO	D-6-FD	DQ	E-1-PW	DO	E-2-PW	DQ	E-3-PW	וטע	C-4-LAA	<u> </u>	E-1-F-14	00	1 -2 - 11	541	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Reference DQ
Metals (mg/kg)																																			
Arsenic	42.9	T	12.4		5.0	U.W	5.0	u,w	5.0	U.UJ	5.0	U.W	5.0	U.W	5.0	U,UJ	5.0	U,W	5.0	U,B	10.5	- 1	29.1		10,3		5.0	W,U	5.0	υw	5.0	ບຸເພ	10.5	— ∔	20.10
Cadmium	0.1	U.B	0.1	U.B	0.1	U.B	0.1	U.B	0.1	U,B	0.4		0.1	UB	0.1	U.B	0.1	U.B	0.1	U,B	0.1	U,B	0.1	U,B	0.1	U,B	0.1	U,B	0.1	U,B	0.1	U,B	0.1	U,B	0.17
		-U,B		0,6	3.1	, _B				-,6			2.5	,0			1.0		5.1		2.9		13.7		1.0		3.4		1.5		3.5		0.6	- 1	1.69
Chromium	3.8		9.3		2.0		0.4	U,B	1.5		0.4	U,B	2.5		1.4		1.0		3.1								2.9		1.3		5.0		1.3	12	55.00
Copper	1.3	U I	1.3	U	1.3	U	1.3	U	2.9		11.2		1.3	υ	1.3	U	1.3	U	1.3	<u>U</u>	20.8		15.4		5.1		2.9				3,8		1.0		
Lead	1.45	U.W	1.45	U.W	3.3	J	3.2	Ĵ	1.45	LU	3.7	J	1.45	U,W	1.45	ບ,ເນ	1.45	ບ,ເນ	1.45	υw	1.45	U,W	34.6		1.45	U,W	3.7	J	1.45	U,W	1,45	U,U	1.45	U,UJ	1.56
	NA.		NA		NA		NA		NA.		NA.		NA		NA.		NA		NA		NA	- 1	NA		NA		NA		NA		NA		NA.		NA
Mercury	130		130		14/		- 110									U,B		U.B	4	U,B		U.B	4	U,B	8.3		9.9		4	U.B	4	U.B	4	U,B	32.00
Nickel	1_4	U,B	4	U,B	_ 4	U,B	4	U,B	4	U,B	4	U,B		U,B	4		_			_		-			-			U.W			0.3	U.W	0.3	U.UJ	1.00E-03
Silver	0.3	U,W	0.3	_u,w	0.3	ບ,ເນ	0.3	U,UJ	0.3	บ,เม	0.3	U,W	0.3	U,W	0.3	U,W	0.3	U,W	0.3	U,W	0.3	U,W	0.3	U,W	0,3	w,u		U,W	0.3	U,W		0,001	- 0.3	0,00	
Zinc	1.5	U.B	5.5	J	12.7	J	17.9	J	1.5	U,B	32.7	J	9.2	J	6.8	J	4.1	J	16.1	J	1.5	U,B	1.5	U,B	7.9	J	11.6	J	9.4	J	28.8		4.5	J	420

U = Concentrations in µg/L below the Limit of Quantitative Detection (LQD); value reported = 1/2 LQD.

B = Below the Contract Required Detection Limit.

 $[\]ensuremath{\text{UJ}}$ = Uncertainty associated with the reported detection limits.

J = Estimated.

^{1 -} Reference Station - GM08 (SAIC, 1998).

APPENDIX A-3
RESULTS OF TISSUE CHEMICAL ANALYSES:
ORGANICS, METALS, AND LIPIDS

Appendix A-3. Concentrations of CoCs in Ribbed Mussels collected for the Raymark Phase III Ecological Risk Assessment Investigation.

	C-1.TISS-SMP DO	C-2-TISS-SIMP DQ	C-3-TISS-SMP DQ	D-1-TISS-SMP	D-2-TISS-SMP	D-3-TISS-SMP	D-4-TISS-SMP DQ	D-6-TISS-SMP	HB-9-TISS-SMP
Lipid Content	2.00	1.40	2.80	3.90	4.00	2.00	3.10	2.60	2.20
Metals (mg/kg dw)	1		1_2.00	1 0.50	1	2.00	0.10	2.00	2.20
Arsenic	2.00 J	2.20 J	2.10 J	1.60 J	2.60 J	3.60 J	3.20 J	2.70 J	2.30 J
Cadmium	0.44 J	0.67 J	0.51 J	0.74 J	0.49 J	0.99 J	0.57 J	1.10 J	0.56 J
Chromium	1.20	1.70	2.30	1.00	0.85	1.00	1.80	2.80	1.20
Copper	24.20	42.60	37.10	16.70	19.90	18.10	20.50	29.80	26.30
Lead	1,10	1.60	2.20	0.95	0.69	0.93	1.00	1.60	1.00
Mercury	0.10	0.11	0.10	0.09	0.09	0.10	0.10	0.14	0.10
Nickel	0.84	0.73	0.62	0.50	0.52	0.57	0.69	0.75	0.51
Silver	1.20	1.90	1,10	0.65	1.00	0.91	1.10	0.84	1.10
Zinc	68.20	60.50	58.20	59.10	58.40	68.80	66.50	70.00	62.90
Polyarometic Hydrocarbons (PAHs) (µg/kg dw)						1	1 00.00	1	1 02:00
1,6,7-Trimethylnaphthalene	5.50 U	5.50 U	5.50 U	5.00 U	5.00 U	5.50 U	6.50 U	6.00 U	5.50 U
1-Methylnaphthalene	90.00	97.00	110	97.00	140	94.00	160	93.00	70.00
1-Methylphenanthrene	5.50 U	5.50 U	5.50 U	5.00 U	5.00 U	5.50 U	6.50 U	6.00 U	5.50 U
2,6-Dimethylnaphthalene	5.50 U	5.50 U	5.50 U	5.00 U	20.00	5.50 U	6.50 U	6.00 U	5.50 U
2-Methylnaphthalene	91.00	85.00	110	130	160	100.00	140	110	80.00
Acenaphthene	23.00	15.00	17.00	25.00	24.00	19.00	29.00	16.00	12.00
Acenaphthylene	5.50 U	5.50 U	12.00	14.00	15.00	5.50 U	14.00	6.00 U	5.50 U
Anthracene	5.50 U	5.50 U	5.50 U	12.00	12.00	5.50 U	6.50 U	6.00 U	5.50 U
Benzo(a)anthracene	15.00	13.00	25.00	26.00	32.00	14.00	22.00	22.00	17.00
Benzo(a)pyrene	5.50 U	5.50 U	13.00	5.00 U	5.00 U	5.50 U	6.50 U	6.00 U	5.50 U
Benzo(b)fluoranthene	5.50 U	5.50 U	17.00	14.00	21.00	5.50 U	6.50 U	6.00 U	5.50 U
Benzo(e)pyrane	5.50 U	5.50 U	15.00	24.00	27.00	5.50 U	20.00	18.00	17.00
Benzo(g,h,i)perylene	5.50 U	5.50 U	19.00	5.00 U	15.00	5.50 U	6.50 U	6.00 U	5.50 U
Benzo(k)fluoranthene	5.50 U	5.50 U	17.00	11.00	18.00	5.50 U	6.50 U	6.00 U	5.50 U
Biphenyl	5.50 U	5.50 U	5.50 U	5.00 U	5.00 U	5.50 U	6.50 U	6.00 U	5.50 U
Chrysene	12.00	5.50 U	22.00	20.00	28.00	5.50 U	15.00	15.00	16.00
Dibenz(a,h)anthracene	5.50 U	5.50 U	12.00	5.00 U	5.00 U	5.50 U	6.50 U	6.00 U	5.50 U
Fluoranthene	33.00	25.00	44.00	74.00	71.00	32.00	54.00	41.00	37.00
Fluorene	5.50 U	5.50 U	13.00	16.00	18.00	11.00	17.00	6.00 U	5.50 U
Sum PAHs (6 High Molecular Weight) 1	76.50	60.00	122	135	152	68.00	111	96.00	66.50
Indeno(1,2,3-cd)pyrene	5.50 U	5.50 U	16.00	5.00 U	5.00 U	_ 5.50 U	6.50 U	6.00 U	5.50 U
Sum PAHs (7 Low Molecular Weight) ²	405	383	472	482	572	406	577	388	308
Naphthalene	210	210	230	200	250	190	260	180	140
Perylene	5.50 U	5.50 U	5.50 U	5.00 U	11.00	5.50 U	6.50 U	6.00 U	5.50 U
Phenanthrene	64.00	56.00	84.00	85.00	93.00	75.00	110	64.00	59.00
yrene	63.00	57.00	83.00	150	140	73.00	100.00	100.00	68.00
Sum PAHs OQ = Data Qualifier: "U"=Undetected: ".!"=Estimated: "	684	646	892	943	1125	691	1019	743	593

DQ = Data Qualifier: "U"=Undetected; "J"=Estimated; "B"=Below CRDL; and "NA"=Not Analyzed.

Tissue sample analyzed = ribbed mussels.

One-half the MDL taken where DQ = "U".

1 - Sum of High Molecular Weight PAHs = Benzo(a)anthracene, Benzo(a)pyrene, Chrysene, Dibenz(a,h)anthracene, Fluoranthene, and Perylene.

2 - Sum of Low Molecular Weight PAHs = 2-Methylnaphthalene, Acenaphthene, Acenaphthylene, Anthracene, Fluorene, Naphthalene, and Phenanthrene.

3 - Sum of Congeners x 2 does not include PCB077,104, and 154.

Appendix A-3. Concentrations of CoCs in Ribbed Mussels collected for the Raymark Phase III Ecological Risk Assessment Investigation.

	C-1-TISS-SMP	8	C-2-TISS-SMP	g	C-3-TISS-SMP		D-1-TISS-SMP	D-2-TISS-SMP DQ	D-3-TISS-SMP	g	D-4-TISS-SMP	D-6-TISS-SMP	8	HB-9-TISS-SMP	00
Organochlorine Pesticides (μg/kg dw)				-											
Aldrin	2.30	U	2.20	υĪ	2.15 U	Т	1.95 U	2.00 U	2.15	U	2.60 U	2.50	Ų	2.10	C
Alpha-BHC	2.30	Ü		Ū	2.15 U	T	1.95 U	2.00 U	2.15	Ü	2.60 U	2.50	U	2.10	U
Alpha-Chlordane	2.30	Ū		υŢ	2.15 U	1	1.95 U	2.00 U	2.15	U	2.60 U	2.50	U	2.10	U
Beta-BHC	2.30	U	2.20	υŢ	2.15 U	Π.	1.95 U	2.00 U	2.15	U	2.60 U	2.50	U	2.10	U
Delta-BHC	2.30	U	2.20	U	2.15 U		1.95 U	2.00 U	2.15	U	2.60 U	2.50	U	2.10	U
Dieldrin	2.30	5		Ü	2.15 U		1.95 U	2.00 U	2.15	U	2.60 U	2.50	U	2.10	U
Endosulfan I	2.30	C	2.20	υŢ	2.15 U		1.95 U	2.00 U	2.15	U	2.60 U	2.50	ᆜ	2.10	U
Endosultan II	2.30	c	2.20	Ü	2.15 L		1.95 U	2.00 U	2.15	U	2.80 U	2.50	U	2.10	U
Endosulfan Sulfate	2.30	U		U	2.15 U		1.95 U	2.00 U	2.15	U	2.60 U		Ÿ	2.10	U
Endrin	2.30	U	2.20	U	2.15 L		1.95 U	2.00 U	2.15	U	2.60 U		Ų,	2.10	NA
Endrin Aldehyde		NA		NA		_	NA.	NA		NA	N		NA.	240	U
Gamma-BHC(Lindane)	2.30	U	2.20	U	2.15 L		1.95 U	2.00 U	2.15	Ų	2.60 U		U	2.10	Ü
Gamma-Chlordane	2.30	U	2.20	U	2.15 L	_	1.95 U	2.00 U	2.15	U	2.60 U		ü	2,10	Ü
Heptachlor	2.30	Ü	2.20	빞	2.15				2.15	U			Ü	2.10	Ü
Heptachlor Epoxide	2.30	U	2.20	Ÿ.	2.15 L	닒	1.95 UJ	2.00 UJ	2.15	···	2.60 U		5	2.10	Ü
Hexachlorobenzene	2.30	UJ	2.20	삤		_	4.90 U	5.00 U	5.50	U	6.50 U		Ü	5.00	U
Methoxychlor	5.50	<u></u>	5.50 2.20	밝	5.50 L 2.15 L	_	1.95 U	2.00 U	2.15	Ü	2.60 U		÷	2.10	ŭ
Mirex	2.30	U	2.20	히	2.15 L		1.95 U	2.00 U	2.15	Ü	2.60 U		Ü	2.10	Ü
o,p'-DDD	2.30	Ü	2.20	히	2.15 L	_	1.95 U	2.00 U	2.15	Ŭ	2.60 U		Ū	2.10	Ü
o,p'-DDE	2.30	Ť	2.20	히	2.15 L		1.95 U	2.00 U	2.15	Ū	2.60 U		Ù	2.10	Ū
o.p'-DOT p.p'-DOD	2.30	Ü	2.20	ΰİ	6.80	+	16.00	8.40	2.15	Ū	2.60 U		U	2.10	U
p,p'-DDE	2.30	Ü	2.20	ŭ	2.15 L	, 1	8.40	7.10	2.15	Ū	2.60 U		C	2.10	Ü
p,p'-DDT	2.30	Ū	2.20	Ū	2.15 L		1.95 U	2.00 U	2.15	Ų	2.60 U	2.50	c	2.10	U
Toxaphene	14.50	Ü	13.50	υl	13.50 L		12.00 U	12.50 U	13.50	U	16.00 L	15.50	c	13.00	U
Polychiorinated Biphenyls (PCBs) (μg/kg dw)															
PCB008	2.30	U	2.20	v	2.15 L	Л	1.95 U	2.00 U	2.15	U	2.80 U		U	2.10	U
PCB018	2.30	U	2.20	U	2.15 L	ı	1.95 U	2.00 U	2.15	U	2.80 U		UJ	2.10	W
PCB028	2.30	Ü	2.20	ט	2.15 L	_	1.95 U	2.00 U	2.15	U	2.60 U		U	2,10	U
PCB029	2.30	U	2.20	U	2.15 L	_	1.95 U	2.00 U	2.15	U	2.60 U		U	2.10	Ü
PCB044	2.30	U	2.20	U	2.15 L		16.00	6.30	2.15	U	8.90	2.50	U	2.10	U
PCB050	2.30	U	2.20	U	2.15	_	1.95 U	2.00 U	2.15	U	2.60 U		U	2.10	U
PCB052	2.30	U	2.20	V	2.15	_	6.80	5.00	2.15	U	7.70	2.50	U	2.10	U
PCB086	2.30	U	2.20	U	2.15	_	6.80	9.20	2.15	U	2.60 U		U	2.10	<u>u</u>
PCB077	2.30	U	2.20	U	2.15	_	1.95 U	2.00 U	2.15	U	2.60 U		U	2.10	U
PCB067	2.30	U	2.20	U		4	1.95 U	2.00 U	2.15	U	2.60 U	9.50	U	2.10 4.50	<u>, v</u>
PCB101	2,30	U	2.20	빞	10.00	.+	15.00 1.95 U	16,00 2,00 U	6.00 2.15	U	11.00 2.60 U		U	2.10	U
PCB104	2.30	Ü	2.20	Ÿ	2.15	_				÷	2.60 U		Ü	2.10	ᇴ
PCB105	2.30	U	2.20	Ü	2.15 U	4	4.50 1.95 U	5.90 4.90	2.15 2.15	Ü	6.70	6.00	<u> </u>	2.10	Ť
PCB118	2.30	U	2.20	ö		H	1.95 U	2.00 U	2.15	Ü	2.60 U		Ų	2.10	Ť
PCB128 PCB128	2.30	ö	2.20	ü	2.15		1.95 U	2.00 U	2.15	Ť	2.60 U		Ŭ	2.10	Ť
PC8128	2.30	Ü	2.20	ŭ		Ħ	12.00	10.00	2.15	Ť	8.80	7.20	Ť	6.00	
PCB138	2.30	Ť	2.20	ül	7.80	4	13.00	21.00	9.00		15.00	14.00		7.40	
PCB154	2.30	Ť	2.20	ŭ	2.15 L	ᆏ	1.95 U	2.00 U	2.15	Ü	2.60 U		Ū	2.10	U
PCB170	2.30	Ü	2.20	ŭ		H	1.95 U	2.00 U	2.15	ŭ	2.60 L		Ü	2.10	Ť
PCB180	2.30	Ü	2.20	ŭ		Ħ	1.95 U	2.00 U	2.15	Ť	2.60		Ū	2.10	Ť
PCB187	2.30	Ü	2.20	ŭ	9.40	4	16.00	11.00	4.50		11.00	8.00		6.10	
PCB188	2.30	ŭ	2.20	ŭ		亣	1.95 U	2.00 U	2.15	Ü	2.60 U		U	4.40	
PC8195	2.30	Ü	2.20	ŭ		Ħ	1.95 U	2.00 U	2.15	Ū	2.60 L		Ü	2.10	U
PCB200	2.30	ŭ	2.20	ŭ		7	1.95 U	2.00 U	2.15	Ũ	2.60 L		Ü	2.10	U
				Ŭ		ī	1.95 U	2.00 U	2.15	Ū	2.60 L		U	2.10	Ū
PCR206	2.30	U	1 2.20			, ,	1.80					£.50			
PCB206 PCB209	2.30	U	2.20	ᆔ		H	1.95 U	2.00 U	2.15	Ü	2.60 L		Ť	2.10	Ü

DQ = Data Qualifier: "U"=Undetected; "J"=Estimated; "B"=Below CRDL; and "NA"=Not Analyzed.

Tissue sample analyzed = ribbed mussels.

One-half the MDL taken where DQ = "U".

^{1 -} Sum of High Molecular Weight PAHs = Benzo(a)anthracane, Benzo(a)pyrene, Chrysene, Dibenz(a,h)anthracene, Fluoranthene, and Perylene.
2 - Sum of Low Molecular Weight PAHs = 2-Methylnaphthalene, Acenaphthene, Acenaphthylene, Anthracene, Fluorene, Naphthalene, and Phenanthrene.
3 - Sum of Congeners x 2 does not include PCB077,104, and 154.

APPENDIX B EFFECTS DATA

APPENDIX B-1
TOXICOLOGICAL EVALUATION OF SEVENTEEN SEDIMENTS:
RAYMARK 1999

TOXICOLOGICAL EVALUATION OF SEVENTEEN SEDIMENTS:

Raymark 1999

Prepared For:

Science Applications International Corporation 221 Third Street Admiral's Gate Newport, Rhode Island 02840

Prepared By:

EnviroSystems, Incorporated 1 Lafayette Road Hampton, New Hampshire 03842

May 5, 1999 Reference SAIC7814-99-04

TOXICOLOGICAL EVALUATION

OF SEVENTEEN SEDIMENTS:

Raymark 1999

1.0 SAMPLE RECEIPT AND STORAGE

Seventeen (17) sediments were collected by Science Applications International Corporation (SAIC), Newport, Rhode Island on April 16, 1999. Each sample was placed in a one gallon polyethylene jug and shipped on ice to EnviroSystems, Incorporated (ESI), Hampton, New Hampshire. Samples were received at ESI on April 20, 1999. Control sediment for the amphipod assay was provided by the organism supplier.

At ESI, samples were given identification numbers and refrigerated at 2-4 °C until test initiation.

2.0 TEST ORGANISMS

The 10 day acute solid phase assay was conducted using *Ampelisca* abdita, obtained from Eastern Aquatic Biosupply of Kingstown, Rhode Island. Prior to use, test organisms were held for two days under conditions of temperature, salinity, and photoperiod similar to those to be used in the assay. *A. abdita* used in the assay were adults between 2 and 3 mm in length.

3.0 TEST METHODOLOGY

3.1 April 21, 1999 (Day -2)

Test and control sediments were all sieved (1 mm) to remove macroinvertebrates, large shell hash, and rocks prior to use in the assays. Each test sediments consisted on five replicates. Each replicate contained approximately 175 mL of sediment and 725 mL of natural sea water in a 1 liter beaker. The overlying water in each test vessel was gently aerated and test chambers were allowed to stabilize overnight.

Client: Science Applications International Corporation.

Date: April 23, 1999

Project: Raymark 1999.

Study: 7814.

3.2 April 22, 1999 (Day -1)

A pore water ammonia sample was taken and measured for one replicate of each test sediment. As the level of un-ionized ammonia in the pore water was ≤0.2 mg/L (half of the acute LC-50 value of 0.40 mg/L for the amphipod, *Ampelisca abdita*) the sediments did not need to be "washed" to reduce total ammonia levels. The concentration of un-ionized ammonia was determined based on ammonia concentrations, temperature, and pH using tables provided by the U.S. EPA (1979). (Salinity was not factored into the determination of percent un-ionized ammonia. Information provided in the U.S. EPA document indicated that the effect of salinity on percent un-ionized ammonia in the sample was small.)

3.3 April 23, 1999 (Day 0)

Pore water ammonia samples were taken and measured. Dissolved oxygen, temperature, pH, and salinity in aliquots of overlying water from each test vessel were recorded. It was noted that the pH of the overlying water for sediment "E-4-SED-SMP," ranged from 3.71 SU to 4.41 SU. To minimize the impact low pH could have on organism survival, the overlying water in these test replicates was decanted, replenished, and allowed to settle for a minimum of four hours.

A total of 20 amphipods were indiscriminately selected from the pool of organisms and randomly added to each test and control sediment replicate. Five true replicates were used for each treatment. Water temperature was $20\pm2^{\circ}$ C, and the salinity regime was established at 28 $\pm2\%$. The photoperiod was set at 24 hours light and 0 hours dark.

3.4 April 24, 199 - May 2, 1999 (Days 1-9)

Temperature, salinity, pH, and dissolved oxygen in each test replicate were recorded daily. In cases where salinity exceed 30 ppt overnight, salinity was corrected to 28±2 ppt using spring water. Overlying water lost to evaporation was replenished as needed. Samples were not renewed during the ten day exposure period.

On Day 2, the pH values of overlying water for the E-4-SED-SMP sediment ranged from 5.04 to 6.84 SU. In this case, the overlying water was decanted and replaced taking care not to disturb the test organisms.

Client: Science Applications International Corporation.

Date: April 23, 1999

Project: Raymark 1999.

Study: 7814.

3.5 May 3, 1999 (Day 10)

Temperature, salinity, pH, and dissolved oxygen in each test replicate were recorded. The test sediment from each replicate was sifted using a 750 μ sieve, organisms were recovered, and survival was recorded.

4.0 REFERENCE TOXICANT EVALUATION

As part of the laboratory quality control program, reference toxicant evaluations are conducted on a regular basis for each test species. These results provide relative health and response data while allowing for comparison with historic data sets. A reference toxicant assay was conducted on April 27, 1999 using cadmium chloride. The assay resulted in a 96 hour LC-50 value of 0.1 mg/L Cadmium (Probit Analysis). This value was within one standard deviation of the historic mean for the species.

5.0 LITERATURE CITED

U.S. EPA 1979. Aqueous Ammonia Equilibrium - Tabulation of Percent Unionized Ammonia. EPA-600/3-79/091. 437 pages

Client: Science Applications International Corporation.

Date: April 23, 1999

Project: Raymark 1999.

Study: 7814.

CLIENT: SAIC STUDY: 7814

PROJECT: RAYMARK 1999

PARAMETER: Ampelisa abdita 10 Day Chronic Assay Survival

			SURVI	/AL		
			Replic	ate		
SITE	Α	В	c ·	D	E	MEAN
LAB CONTROL	90%	100%	90%	80%	100%	92%
C-1-SED-SMP	65%	65%	45%	25%	45%	49%
C-2-SED-SMP	70%	60%	75%	15%	25%	49%
C-3-SED-SMP	5%	15%	10%	0%	0%	6%
D-1-SED-SMP	85%	90%	85%	45%	60%	73%
D-2-SED-SMP	75%	80%	70%	25%	25%	55%
D-3-SED-SMP	50%	60%	50%	35%	35%	46%
D-4-SED-SMP	70%	80%	60%	55%	20%	57%
D-5-SED-SMP	60%	85%	50%	60%	60%	63%
D-6-SED-SMP	0%	15%	0% ·	0%	0%	3%
D-6-SED-FD	0%	0%	0%	0%	0%	0%
E-1-SED-SMP	55%	70%	75%	45%	70%	63%
E-2-SED-SMP	60%	80%	55%	55%	40%	58%
E-3-SED-SMP	80%	95%	55%	70%	40%	68%
E-4-SED-SMP	40%	50%	65%	45%	25%	45%
F-1-SED-SMP	45%	50%	65%	70%	45%	55%
F-2-SED-SMP	85%	60%	75%	80%	80%	76%
F-3-SED-SMP	70%	60%	80%	65%	50%	65%

COMMMENTS:

Survival in Replicate "E" from the laboratory control sediment is based on recovery of 10 organisms from an original 10 added to the test vessel.

SAIC

STUDY:

7814

PROJECT: PARAMETER:

Ammonia Data

RAYMARK 1999

Ammonia Concentration, mg/L

Exposure (Day)

	L	Aposuic	(Day)	
SITE	1	0	5	10
LAB CONTROL	0.40	0.81	0.70	<0.05
C-1-SED-SMP	2.92	2.87	4.30	2.58
C-2-SED-SMP	1.93	2.42	3.52	0.44
C-3-SED-SMP	0.72	1.02	1.40	<0.05
D-1-SED-SMP	0.08	0.06	0.59	0.45
D-2-SED-SMP	1.70	0.94	2.51	0.11
D-3-SED-SMP	1.61	3.28	1.74	<0.05
D-4-SED-SMP	1.35	1.12	5.88	2.00
D-5-SED-SMP	4.01	<0.05	2.32	<0.05
D-6-SED-SMP	1.50	1.82	3.03	<0.05
D-6-SED-FD	1.71	1.89	4.36	1.43
E-1-SED-SMP	2.68	1.41	<0.05	2.66
E-2-SED-SMP	4.91	3.90	<0.05	2.80
E-3-SED-SMP	4.67	2.78	<0.05	3.28
E-4-SED-SMP	2.57	2.52	2.04	2.00
F-1-SED-SMP	3.45	4.71	3.81	3.82
F-2-SED-SMP	5.24	3.07	4.08	5.80
F-3-SED-SMP	4.22	4.28	4.87	5.32

COMMMENTS:

Ammonia on Days -1 and 0 were measured on aliquots of pore water.

Ammonia on Days 5 and 10 were measured on aliquots of the overlying water.

SAIC

STUDY NUMBER: 7814 PROJECT:

PARAMETER:

RAYMARK 1999 **Water Quality Data**

CONTROL:

Day		Repli	Replicate A Replicate B							Repli	cate C			Replic	ate D			Replica	ate E	
Day	Temp	•	ρΗ	Sal	Temp	•		Sal	Temp	D.Ö.	рH	Sal	Temp	D.O.	pН	Sal	Temp	D.O.	рН	Sal
0	22	6.6	• •	30	22		·			6.9	7.96	30	22	6.9	7.95	30	22	6.9	7.95	30
1	22	6.4		32	22	6.7				6.8	7.86	32	22	6.8	7.86	32	22	6.8	7.77	32
2	22	7.2			22		7.94			7.1	7.98	30	22	7.0	7.98	30	22	6.9	7.95	30
2	22	7.5	7.98		22					7.6	7.97	29	22	7.5	7.94	28	22	7.6	7.95	29
4	22	7.0	7.87	31	22	6.8			_	6.8	7.90	30	22	6.8	7.83	31	22	6.7	7.88	31
5	22	7.0		30					22	6.8	7.99	30	22	6.7	8.03	30	22	6.8	8.09	30
6	22	7.1	7.98	30					22	7.1	7.96	30	22	7.1	7.95	30	22	7.1	7.96	30
7	22	7.1	7.87	30	22	7.1				7.1	7.86	30	22	7.1	7.86	30	22	7.1	7.91	30
8	21	7.2	7.90		21	7.2	6.92			7.2	6.87	28	21	7.2	7.08	29	21	7.1	7.96	31
9	21	5.9		30	21	5.9	8.06	30	21	6.1	8.06	29	21	6.1	8.07	28	21	6.3	8.07	29
10	21	6.3	8.18	30	21	6.4	8.19	30	21	6.4	8,17	30	21	6.4	8.17	30	21	6.3	8.17	30

C-1-SED-SMP

Day		Replicate A Replicate B								Repli	cate C			Replic	ate D			Replica	ate E	
Day	Temp	D.O.		Sal	Temp	•		Sal	Temp	D.Ò.	pН	Sal	Temp	D.O.	рΗ	Sal	Temp	D.O.	рΗ	Sal
0	22	6.8	•	29	22		8.01	29	22	6.8	7.99	29	22	6.7	8.00	29	22	6.7	8.02	29
1	22	6.6	7.99	31	22	6.4	8.01	31	22	6.4	8.01	31	22	6.4	8.00	31	22	6.3	8.01	31
2	22	6.8		30	22	7.0	8.10	29	22	6.9	8.10	29	22	6.9	8.10	28	22	6.9	8.09	28
3	22	7.4	8.12	29	22		8.12		22	7.4	8.12	29	22	7.3	8.11	27	22	7.4	8.10	29
4	22	6.8		31	22	6.9	8.16	31	22	6.6	8.15	30	22	6.8	8.14	31	22	6.7	8.15	30
5	22	6.8	8.37	30	22	6.8	8.37	30	22	6.7	8.30	30	22	6.7	8.35	30	22	6.7	8.33	30
6	22	6.9	8.31	30	22	7.1	8.32	30	22	7.1	8.31	30	22	6.5	8.18	30	22	6.9	8.28	30
7	22	7.0	8.18	30	22	7.1	8.29	30	22	7.1	8.28	30	22	6.9	8.25	29	22	6.9	8.25	30
8	21	7.1	8.06	28	21	7.0	7.32	28	21	7.3	8.30	29	21	7.2	8.32	30	21	7.1	8.34	30
9	21	6.3	8.41	28	21	6.2	8.42	30	21	6.3	8.42	29	21	6.1	8.44	29	21	6.3		
10	21	6.3	8.48	29	21	6.1	8.46	29	21	6.0	8.48	29	21	6.2	8.47	29	21	6.1	8.47	30

SAIC STUDY NUMBER: 7814

PROJECT:

RAYMARK 1999

PARAMETER:

10

Water Quality Data

C-2-SED-SMP					_					Donlid	cate C			Replic	ate D			Replica	ate E	
Day		Replic	ate A				ate B					Sal	Temp	•	pН	Sal	Temp	D.O.	pН	Sal
	Temp	D.O.	pН	Sal	Temp			Sal	Temp	6.8	ρ⊓ 7.98	28	22	6.7	7.99	28	22	6.7	8.03	28
0	22	6.7	8.02	28	22	6.8	8.04	28	22	6.4	7.98	31	22	6.5	7.99	31	22	6.5	7.97	31
1	22	6.6	8.00	31	22	6.6	8.01	31	22	7.0	8.09	28	22	7.1	8.10	28	22	7.1	8.11	28
2	22	6.4	8.09	29	22	6.8	8.09	28	22	7.0 7.3	8.12	28	22	7.3	8.14	28	22	7.2	8.14	
3	22	7.3	8.17	29	22	7.3	8.11	29	22	6.7	8.14	30	22	6.8	8.13	29	22	6.9	8.14	29
4	22	6.9	8.14	29	22	6.8	8.13	30	22	6.5	8.30	30		6.6	8.32	30	22	6.6	8.24	
5	22	6.6	8.35	30	22	5.6	8.08	30	22	7.0	8.27	29	22	7.0	8.27	29	22	7.0	8.26	
6	22	6.9	8.29	30	22	7.0	8.28	29	22	7.0 7.0	8.23	29 29	22	7.0	8.26	29		7.0	8.26	
7	22	7.0	8.27	29	22	7.0	8.24	29	22	7.0 7.2	8.23	29		7.2	8.30	29	21	7.3	8.21	29
8	21	7.2	8.07	28	21	7.2	8.22	28	21	6.1	8.32	29		6.0	8.33	29	21	6.1	8.34	
9	21	5.9	8.31	29	21	6.0	8.33	30		6.1	8.35	30		6.1	8.36	29	21	6.3	8.34	29
10	21	6.0	8.39	30	21	6.1	8.39	30	21	0.1	0,33	50	•	•						
C-3-SED-SMP																				
• • • • • • • • • • • • • • • • • • • •										Dank	eete C			Replic	cate D			Replic	ate E	
Day		Replie	cate A				cate B				cate C	0-1	Tomo	D.O.	pΗ	Sal	Temp	D.O.	pН	Sal
,	Temp	D.O.	pН	Sal	Temp	D.O	pН	Sal	Temp			Sal	Temp		7.98				•	28
0	22	6.7	8.00	28.3	22	6.8	8.01	28				28			7.95 7.95					
1	22	6.5	7.95	29	22	6.6	7.96	31				31			7.97		-			
2	22		8.10	28	22	7.1	8.03	29			7.97	28								
3	22		8.09	29	22	7.2	8.02	28				28			•					
4	22	-		30	22	6.6	8.05	29												
5	22			29	22	6.7	7.92	30												•
6	22			-		6.9	7.97	29				29								
7	22	_			22	6.9	7.80	28	3 22											_
8	21					7.7	7.68	28	3 21			29							-	
9	21		-			5.9	8.01	29	21											-
J	~ 1						8.03	29	21	5.5	8.01	30) 2'	5.6	8.01	30	1 21	23.3	5 O.V.	, 20

21 6.1 8.03

21 5.8 8.16 29

CLIENT: SAIC STUDY NUMBER: 7814

PROJECT:

RAYMARK 1999

Water Quality Data PARAMETER:

								•												
D-1-SED-SMP											anta C			Replic	ate D			Replica	te E	
Day		Replic	ate A				cate B			•	cate C	Cal	Temp	D.O.		Sal	Temp	•	pН	Sal
-2	Temp	D.O.	pН	Sal	Temp	D.O		Sal	Temp			Sal 30	22	6.8	7.86	30	22	6.8	7.83	30
0	22	6.1	7.66	30	22	6.1	7.90	30	22	6.6	7.92	33	22	6.6	7.94	33	22	6.5	7.91	33
1	22	5.9	7.92	33	22	6.0	7.90	33	22	6.2	7.95	30	22	7.0	7.93	30	22	7.0	7.88	29
2	22	6.9	7.98	29	22	7.0	7.97	28	22	7.0	7.94	30 29	22	7.0	7.87	28	22	7.2	7.83	29
3	22	7.1	7.97	29	22	7.2	7.87	29	22	7.3	7.86	30	22	6.6	7.96	29	22	6.8	7.97	29
4	22	6.7	8.06	29	22	7.0	7.93	29	22	6.9	7.91	30	22	6.8	7.81	30	22	6.8	7.80	30
5	22	6.7	7.95	30		6.8	7.91	30	22	6.8	7.90	29	22	7.1	7.80	29	22	7.1	7.77	28
6	22	6.9	7.89	29	22	7.0	7.80	28	22	7.1	7.79	29 29	22	7.0		29	22	7.0	7.59	29
7	22	7.0	7.70	29	22	7.0	7.70	28	22	7.1	7.71	29 29		7.3		30	21	7.3	7.75	31
8	21	7.3	7.54	29		7.3	7.71	29	21	7.3	7.70	29 29		6.2		29	21	6.2	7.82	30
9	21	6.2	7.88	28		6.3	7.86	29	21	6.4	7.82			6.3		29	21	6.2	7.83	30
10	21	6.0	7.87	29	21	6.0	7.89	29	21	6.3	7 _: 88	29	21	0.5	7.01		- '			
D-2-SED-SMP																				
D-2-SED-SMP											anta C			Renlie	cate D			Replica	ate E	
_		Repli	cate A			•	cate B				cate C	Cal	Tomp	•	cate D	Sal	Temp	Replica		Sal
D-2-SED-SMP Day	Temp	_ :		Sal	Temp	D.O	pН	Sal	Temp	D.O.	ρН	Sal	Temp	D.Ò.	pН	Sal 28	Temp	D.Ö.	ate E pH 8.02	Sal 28
_	Temp 22	•	pН		Temp 22	D.O 6.6	pH 8.03	Sal 28	22	D.O. 6.6	pH 7.78	28	22	D.Ö. 6.5	pH 8.03	28	22	D.Ö. 6.6	pH 8.02	
Day		D.Ö.	pН	28 30	Temp 22 22	D.O	pH 8.03 7.97	Sal 28 30	22 22	D.O. 6.6 6.5	pH 7.78 8.00	28 30	22 22	D.O. 6.5 6.2	pH 8.03 8.01	28 30	22 22	D.O. 6.6 6.1	pH 8.02 8.00	28
Day	22	D.Ö. 6.6	pH 8.00	28 30 30	Temp 22 22 22	D.O 6.6 6.4 7.0	pH 8.03 7.97 8.12	Sal 28 30 29	22 22 22	D.O. 6.6 6.5 7.1	pH 7.78 8.00 8.13	28 30 30	22 22 22	D.O. 6.5 6.2 7.0	pH 8.03 8.01 8.11	28 30 29	22 22 22	D.O. 6.6 6.1 7.0	pH 8.02 8.00 8.09	28 30
Day 0 1	22 22	D.Ö. 6.6 6.4	pH 8.00 7.91	28 30 30 28	Temp 22 22 22 22	D.O 6.6 6.4 7.0 7.4	pH 8.03 7.97 8.12 8.12	Sal 28 30 29 28	22 22 22 22	D.O. 6.6 6.5 7.1 7.3	pH 7.78 8.00 8.13 8.14	28 30 30 28	22 22 22 22	D.O. 6.5 6.2 7.0 7.3	pH 8.03 8.01 8.11 8.12	28 30 29 28	22 22 22 22	D.O. 6.6 6.1 7.0 7.1	pH 8.02 8.00	28 30 29
Day 0 1 2	22 22 22	D.O. 6.6 6.4 6.8	pH 8.00 7.91 8.12 8.06	28 30 30	Temp 22 22 22 22	D.O 6.6 6.4 7.0 7.4 6.8	pH 8.03 7.97 8.12 8.12 7.90	Sal 28 30 29 28 29	22 22 22 22 22 22	D.O. 6.6 6.5 7.1 7.3 6.8	pH 7.78 8.00 8.13 8.14 7.88	28 30 30 28 30	22 22 22 22 22	D.O. 6.5 6.2 7.0 7.3 6.9	pH 8.03 8.01 8.11 8.12 7.86	28 30 29 28 30	22 22 22 22 22 22	D.O. 6.6 6.1 7.0 7.1 6.9	pH 8.02 8.00 8.09 8.09 7.81	28 30 29 28
Day 0 1 2 3 4	22 22 22 22	D.O. 6.6 6.4 6.8 7.4	pH 8.00 7.91 8.12 8.06	28 30 30 28 30	Temp 22 22 22 22 22 22	D.O 6.6 6.4 7.0 7.4 6.8 6.8	pH 8.03 7.97 8.12 8.12 7.90 8.26	Sal 28 30 29 28 29 30	22 22 22 22 22 22 22	D.O. 6.6 6.5 7.1 7.3 6.8 6.8	pH 7.78 8.00 8.13 8.14 7.88 8.25	28 30 30 28 30 30	22 22 22 22 22 22 22	D.O. 6.5 6.2 7.0 7.3 6.9 6.8	pH 8.03 8.01 8.11 8.12 7.86 8.20	28 30 29 28 30 30	22 22 22 22 22 22 22	D.O. 6.6 6.1 7.0 7.1 6.9 6.3	pH 8.02 8.00 8.09 8.09 7.81 7.96	28 30 29 28 30
Day 0 1 2 3	22 22 22 22 22	D.O. 6.6 6.4 6.8 7.4 6.9 6.8	pH 8.00 7.91 8.12 8.06 7.91 8.31	28 30 30 28 30 30	Temp 22 22 22 22 22 22 22	D.O 6.6 6.4 7.0 7.4 6.8 7.0	pH 8.03 7.97 8.12 8.12 7.90 8.26 8.23	Sal 28 30 29 28 29 30 28	22 22 22 22 22 22 22 22	D.O. 6.6 6.5 7.1 7.3 6.8 6.8 7.1	pH 7.78 8.00 8.13 8.14 7.88 8.25 8.23	28 30 30 28 30 30 29	22 22 22 22 22 22 22 22	D.O. 6.5 6.2 7.0 7.3 6.9 6.8	pH 8.03 8.01 8.11 8.12 7.86 8.20 8.19	28 30 29 28 30 30 28	22 22 22 22 22 22 22 22	D.O. 6.6 6.1 7.0 7.1 6.9 6.3 7.1	pH 8.02 8.00 8.09 8.09 7.81 7.96 8.09	28 30 29 28 30 30
Day 0 1 2 3 4 5	22 22 22 22 22 22	D.O. 6.6 6.4 6.8 7.4 6.9 6.8	pH 8.00 7.91 8.12 8.06 7.91 8.31 8.18	28 30 30 28 30 30 30	Temp 22 22 22 22 22 22 22	D.O 6.6 6.4 7.0 7.4 6.8 7.0	pH 8.03 7.97 8.12 8.12 7.90 8.26 8.23 8.21	Sal 28 30 29 28 29 30 28	22 22 22 22 22 22 22 22 22	D.O. 6.6 6.5 7.1 7.3 6.8 6.8 7.1 7.0	pH 7.78 8.00 8.13 8.14 7.88 8.25 8.23 8.19	28 30 30 28 30 30 29	22 22 22 22 22 22 22 22 22 22	D.O. 6.5 6.2 7.0 7.3 6.9 6.8 7.1	pH 8.03 8.01 8.11 8.12 7.86 8.20 8.19	28 30 29 28 30 30 28 28	22 22 22 22 22 22 22 22 22	D.O. 6.6 6.1 7.0 7.1 6.9 6.3 7.1 6.9	pH 8.02 8.00 8.09 8.09 7.81 7.96 8.09 8.05	28 30 29 28 30 30 30
Day 0 1 2 3 4 5 6 7	22 22 22 22 22 22 22	D.O. 6.6 6.4 6.8 7.4 6.9 6.8	pH 8.00 7.91 8.12 8.06 7.91 8.31 8.18	28 30 30 28 30 30 28 28	Temp 22 22 22 22 22 22 22 22 22	D.O 6.6 6.4 7.0 7.4 6.8 7.0	pH 8.03 7.97 8.12 7.90 8.26 8.23 8.21 8.17	Sal 28 30 29 28 29 30 28 28	22 22 22 22 22 22 22 22 22	D.O. 6.6 6.5 7.1 7.3 6.8 6.8 7.1 7.0	pH 7.78 8.00 8.13 8.14 7.88 8.25 8.23 8.19	28 30 30 28 30 30 29 29 29	22 22 22 22 22 22 22 22 22 22 22 22	D.O. 6.5 6.2 7.0 7.3 6.9 6.8 7.1 7.0 7.1	pH 8.03 8.01 8.11 8.12 7.86 8.20 8.19 8.19	28 30 29 28 30 30 28 28 30	22 22 22 22 22 22 22 22 22	D.O. 6.6 6.1 7.0 7.1 6.9 6.3 7.1 6.9 7.1	pH 8.02 8.09 8.09 7.81 7.96 8.09 8.05 8.08	28 30 29 28 30 30 30 30
Day 0 1 2 3 4 5	22 22 22 22 22 22 22 22	D.O. 6.6 6.4 6.8 7.4 6.9 6.9	pH 8.00 7.91 8.12 8.06 7.91 8.31 8.18 8.20	28 30 30 28 30 30 28 28 28	Temp 22 22 22 22 22 22 22 22 22 22 22 22	D.O 6.6 6.4 7.0 7.4 6.8 7.0 7.0	pH 8.03 7.97 8.12 8.12 7.90 8.26 8.23 8.21 8.17	Sal 28 30 29 28 29 30 28 28 30	22 22 22 22 22 22 22 22 21 21	D.O. 6.6 6.5 7.1 7.3 6.8 6.8 7.1 7.0	pH 7.78 8.00 8.13 8.14 7.88 8.25 8.23 8.19 8.15	28 30 30 28 30 30 29 29 29 29	22 22 22 22 22 22 22 22 22 21 21	D.O. 6.5 6.2 7.0 7.3 6.9 6.8 7.1 7.0	pH 8.03 8.01 8.11 8.12 7.86 8.20 8.19 8.13 8.13	28 30 29 28 30 30 28 28 28 30 29	22 22 22 22 22 22 22 22 21 21	D.O. 6.6 6.1 7.0 7.1 6.9 6.3 7.1 6.9	pH 8.02 8.00 8.09 8.09 7.81 7.96 8.09 8.05 8.08 8.16	28 30 29 28 30 30 30 30 32 30

6.1 8.29

21

10

SAIC

STUDY NUMBER: 7814

PROJECT:

RAYMARK 1999

PARAMETER:

Water Quality Data

D-3-SED-SMP		Donlie	A			2anli	cate B			Renli	cate C			Replic	ate D			Replica	ate E	
Day		Replic	AIL A			•				•		0-1	T	•		Sal	Temp	nò	рH	Sal
	Temp	D.O.	pН	Sal	Temp	D.O	рН	Sal	Temp	D.O.	рн	Sal	Temp	D.O.	pН		•		•	
n	22	6.7	8.03	29	22	6.7	8.06	29	22	6.8	8.02	29	22	6.8	7.96	29	22	6.7	8.00	
4	22	6.5	7.97	30	22	8.5	7.99	30	22	6.4	7.99	30	22	6.3	8.01	30	22	6.2	7.96	30
1										6.9		30	22	6.9		29	22	6.9	8.05	30
2	22	6.6	8.08	30	22	6.8		29	22								22	7.5		29
3	22	7.3	8.05	28	22	7.4	8.08	28	22	7.4	8.07	28	22	7.4		28				
Ā	22	7.0	8.15	29	22	7.0	8.17	29	22	6.9	8.15	29	22	6.9	8.14	28	22	6.8		
-	22	6.6	8.08	30	22	6.7		30	22	6.8	8.17	30	22	6.8	8.01	30	22	6.7	8.05	30
5									22	7.1	8.14	29	22	7.0	8.01	29	22	7.0	7.98	30
6	22	7.0	8.09	29	22	7.0		30									22	6.9		
7	22	6.8	8.08	30	22	6.9	8.03	29	22	6.9	8.08	30	22	6.9		30				
8	21	7.4	8.04	30	21	7 3	7.93	30	21	7.2	8.12	30	21	7.2	7.99	30	21	7.3	7.96	31
-					21	5.9	8.06	30	21	6.0	8.24	29	21	5.8	8.16	30	21	5.7	8.10	29
9	21	6.0	8.23	29										6.0		30	21	5.9	8.13	29
10	21	6.2	8.22	29	21	6.1	8.11	30	21	6.0	8.26	29	21	0.0	0.13	30	21	0.0	0.10	

D-4-SED-SMP

Day		Renli	eplicate A Replicate B							Repli	cate C			Replic	ate D			Replica	ate E	
Day	Temp	•		Sal	Temp	•		Sal	Temp	D.Ö.	Hα	Sal	Temp	D.O.	pН	Sal	Temp	D.O.	рΗ	Sal
•	_'_		·	29	22	_	•	29	22	6.6	7.98		22	6.6	7.97	29	22	6.5	7.97	29
0	22	6.6										30	22		8.05	30	22	6.1	8.08	30
1	22	6.1	8.05	30	22	6.5	8.07	30	22	5.9										
2	22	6.5	8.25	30	22	6.7	8.25	29	22	6.8	8.24	29	22	6.8	8.23	29	22	6.9	8.23	30
2	22	7.3	8.30	28	22			28	22	7.4	8.31	28	22	7.5	8.31	27	22	7.4	8.31	29
3				_									22	6.8	8.35	30	22	6.8	8.37	30
4	22	6.9	8.33	30	22	6.4	8.34	31	22	6.6	8.34	30	22							
5	22	6.7	8.44	30	22	6.7	8.43	30	22	6.6	8.40	30	22	6.6	8.43	30	22	6.6		
6	22	6.8	8.42	30	22			29	22	6.9	8.40	30	22	7.0	8.40	28	22	7.0	8.43	30
0										6.8	8.35	29	22	6.8	8.40	28	22	6.8	8.41	30
7	22	6.7	8.36	29	22	6.8	8.37	28	22	0.0										
8	21	7.3	8.33	30	21	7.3	8.35	30	21	7.3	8.34	30	21	7.3	8.43	30	21	7.2		
Č	_:		•	20	21	6.2	8.48	29	21	6.1	8.48	30	21	6.2	8.53	30	21	6.0	8.54	30
9	21	6.0	8.42	29	21	U.Z										20	24	6.1	8.54	30
10	21	5.6	8.44	29	21	5.8	8.50	29	21	6.0	8.47	29	21	6.0	8.54	30	21	0.1	0.34	30

SAIC

STUDY NUMBER: 7814

PROJECT:

RAYMARK 1999

PARAMETER:

10

Water Quality Data

D-5-SED-SMP																		D"-	-4- E	
Day		Repli	cate A		1	Repli	cate B			Repli	cate C			Replic			_	Replica		0-1
Day	Temp	•		Sal	Temp	D.O	pН	Sal	Temp	D.O.	рН	Sal	Temp	D.O.	•	Sal	Temp		pΗ	Sal
0	22	6.5		29	22	6.5	•	29	22	6.6	7.87	29	22	6.6		29	22	6.5	7.97	29
1	22	6.2		30	22	6.1	7.98	30	22	6.4	7.99	30	22	6.3		30	22	6.3	7.98	30
ż	22	6.6		29	22	6.7	8.16	29	22	6.8	8.09	27	22	6.8	8.09	30	22	6.8	8.08	30
3	22	7.3		28	22	7.4	8.17	29	22	7.4	8.18	28	22	7.3	8.15	28	22	7.3	8.09	29
4	22	6.8	8.31	29	22	6.8	8.27	29	22	6.8	8.25	29	22	6.6	8.21	28	22	6.4	8.15	29
5	22	6.5		30	22	6.5		30	22	6.6	8.31	30	22	6.6	8.29	30	22	6.6	8.36	30
6	22	6.7		29	22	6.9	8.23	30	22	7.0	8.24	29	22	7.0	8.25	29	22	6.9	8.23	30
7	22	6.8		29	22	6.8	8.15	29	22	6.9	8.15	29	22	6.8	8.17	28	22	6.8	8.15	30
8	21	7.4		29	21	7.3	8.11	31	21	7.4	8.12	30	21	7.3	8.11	33	21	7.2	8.14	31
9	21	6.0		28	21	6.0		29	21	5.8	8.24	29	21	6.0	8.21	30	21	6.2	8.20	31
10	21	5.8		28	21	5.9	8.27	28	21	6.0	8,26	28	21	6.0	8.22	29	21	6.1	8.21	29
10	21	3.0	0.50	20		0.0	U.				•									
D-6-SED-SMP																				
D		Popli	cata A		1	Renli	cate B			Repli	cate C			Replic	cate D			Replic	ate E	
Day	T	•	cate A	Cal	Temp	•		Sal	Temp			Sal	Temp	-		Sal	Temp	D.O.	pН	Sal
	Temp			Sal	•		-	29	22	6.8			22		•	29	22	6.8	-	29
0	22	6.6		29	22	6.5		31	22	6.4	7.95		22	6.3		31	22	6.2		31
1	22	6.1	7.93	31	22	6.1	8.00			6.9	8.11	30	22			30	22	7.1	8.13	30
2	22	6.4		30		6.6	8.08	30				29	22			28	22	7.4	8.08	30
3	22	7.3		28	22	7.4		28	22	7.4	8.12		_			29	22	6.8		
4	22	6.4		30		6.5		29	22	6.4	8.15	29	22				22	6.6		
5	22	6.1	8.13	30	22	6.5		30		6.6	8.20					30		7.0		
6	22	6.5	8.10	29	22	6.8	8.10	30		6.9	8.19					30	22			
7	22	6.6	7.99	27	22	6.7	7.99	28		6.9	8.15		22			28	22	6.8		
8	21	7.3	8.06	29	21	7.4	8.00	31	21	7.2	8.25	30		7.4		31	21	7.3		31
9	21	6.3	8.15	30	21	6.5	8.16	31	21	6.2	8.46			6.3		31	21	6.4		
					- 4		0.00	20	24	20	9 47	20	21	6 A	R RO	30	21	6.2	8.63	30

30 21 6.0 8.47

21 5.9 8.26

30

5.7 8.20

30

21

6.2 8.63

6.0 8.60

30

21

CLIENT: SAIC STUDY NUMBER: 7814

PROJECT: RAYMARK 1999
PARAMETER: Water Quality Data

D-6-SED-FD					_					D!'				Donlie	and D			Replic	oto E	
Day		Replic	cate A			Repli	cate B			кери	cate C			Replic	ale D			Kehiic		
	Temp	D.Ö.	pН	Sal	Temp	D.O	рΗ	Sal	Temp	D.O.	рН	Sal	Temp	D.O.	pН	Sal	Temp	D.O.	pН	Sal
0	22	6.7	8.04	28	22	6.7	8.00	28	22	6.8	8.03	28	22	6.8	7.99	28	22	6.8		_
1	22	6.4	7.98	29	22	6.3	7.98	29	22	6.4	8.02	29	22	6.4	8.04	29	22	6.4	8.04	
2	22	6.5	7.97	29	22	6.7	7.98	29	22	7.0	8.02	30	22	6.9	8.05	30	22	7.1	8.05	
3	22	7.2	8.06	26	22	7.4	8.04	28	22	7.4	8.03	28	22	7.4	8.03	28	22	7.5		_
4	22	7.0	7.94	30	22	7.2	7.99	29	22	6.8	7.98	30	22	6.8	7.99	30	22	6.5		
5	22	6.4	7.89	30	22	6.8	8.00	30	22	6.9	8.02	30	22	6.8	8.02	30	22	6.9		30
6	22	6.8	7.93	28	22	6.8	8.00	28	22	6.9	8.00	29	22	7.0	8.00	28	22	7.0		
7	22	6.7	7.96	28	22	6.8	7.86	28	22	6.9	7.86	29	22	7.0	7.92	30	22	6.9	• • •	
8	21	7.1	7.73	30	21	7.3	7.90	28	21	7.3	7.92	30	21	7.4	7.92	30	21	7.4		-
9	21	5.8	8.13	29	21	6.0	8.08	29	21	6.1	8.06	30	21	6.0	8.05	29	21	6.2		
10	21	6.1	8.11	29	21	5.8	8.04	29	21	6.0	8,06	30	21	6.1	8.05	29	21	6.2	8.06	29

E-1-SED-SMP

Day		Replicate A Replicate B								Repli	cate C			Replic	ate D			Replica	ate E	
,	Temp	D.Ö.	pН	Sal	Temp	D.O	pН	Sal	Temp	D.O.	ρН	Sal	Temp	D.O.	рΗ	Sal	Temp	D.O.	pН	Sal
0	22	6.7	7.42	27	22	6.8	•	27	22	6.8	7.90	27	22	6.7	7.26	27	22	6.8	7.51	27
1	22	6.3	7.87	29	22	6.4	7.65	29	22	6.4	7.62	29	22	6.5	7.58	29	22	6.6	7.58	29
2	22	7.0	8.02	30	22	7.1	7.53	26	22	7.2	7.51	27	22	7.1	7.52	27	22	7.1	7.54	28
3	22	7.3	7.96	26	22	7.4	7.46	26	22	7.5	7.44	26	22	7.5	7.46	26	22	7.5	7.44	26
4	22	6.4	7.74	26	22	6.2	7.54	27	22	6.3	7.49	26	22	6.4	7.48	26	22	6.5	7.44	26
5	22	6.5	7.42	30	22	6.8	7.25	30	22	6.9	7.37	30	22	6.8	6.93	30	22	6.8	7.40	30
6	22	6.2	7.23	27	22	6.7	7.23	27	22	6.9	7.33	27	22	6.7	7.34	27	22	6.8	7.32	27
7	22	6.7	7.53	27	22	6.8	7.47	26	22	6.9	7.36	27	22	6.7	7.34	27	22	6.9	7.32	27
8	21	7.0	6.29	26	21	7.2	6.54	27	21	7.4	6.85	27	21	7.3	6.76	28	21	7.3	6.88	28
9	21	6.0	7.68	27	21	6.0	7.49	27	21	6.0	7.43	27	21	6.3	7.38	27	21	6.2	7.36	28
10	21	5.7	7.42	28	21	6.1	7.33	28	21	6.2	7.21	27	21	5.9	7.17	27	21	5.9	7.23	28

ĺ

SAIC

STUDY NUMBER: 7814

PROJECT:

RAYMARK 1999

PARAMETER:

Water Quality Data

E-2-SED-SMP		Donli	cate A		,	Danli	cate B			Reoli	cate C			Replic	cate D			Replic	ate E	
Day	Temp	•		Sal	Temp	•		Sal	Temp	•		Sal	Temp	D.O.		Sal	Temp	•	pН	Sal
_	•		•			3.1		28	22	3.4	6.50	28	22		6.51	28	•	3.6	6.50	28
0	22	2.3			22	•••	6.52				7.64	30	22	7.5		30		7.2		30
1	22	7.0		30	22	7.3		30	22	7.6						26		7.0		26
2	22	6.7		27	22 .	7.0		26	22	7.1	7.49	26	22						7.24	26
3	22	7.4	7.44	26		7.5	7.31	26	22	7.5	7.29	26	22			26		7.5		
4	22	6.8	7.40	26	22	6.7	7.37	25	22	6.8	7.32	26	22		7.32	25		6.5	7.28	25
5	22	6.9	7.07	30	22	6.9	6.95	30	22	6.9	6.96	30	22	6.9		30		6.9	7.07	30
6	22	6.7	7.39	27	22	6.9	7.42	27	22	7.0	7.43	27	22	6.8	7.44	26		6.9	7.43	26
7	22	6.9	7.35	27	22	6.9	7.34	27	22	6.9	7.31	27	22	6.9	7.29	26		6.8	7.28	27
8	21	7.6	6.88	27	21	7.3	6.93	29	21	7.4	6.93	27	21	7.5	6.69	27	21	7.4	6.63	28
9	21	6.7	7.41	27	21	6.6	7.41	28	21	6.3	7.40	27	21	6.4	7.41	27	21	6.2	7.39	27
10	21	6.4		27	21	6.3	7.36	27	21	6.4	7,37	28	21	6.4	7.41	28	21	6.4	7.40	28
E-3-SED-SMP																				
Day		Replie	cate A		ı	Repli	cate B			Repli	cate C			Replic	ate D			Replica	ate E	
,	Temp	•		Sal	Temp	•		Sai	Temp	D.O.	pН	Sal	Temp		•	Sal	Temp		pН	Sal
0	22	6.4	7.47	27	22	6.5	7.53	27	22	6.7	7.40	27	22	6.8	7.41	27	22	6.7	7.37	27
1	22	6.4	7.55	29	22	6.3	7.57	29	22	6.5	7.57	29	22	7.0	7.56	29	22	6.8	7.51	29
2	22	6.9	7.44	27	22	7.1	7.47	27	22	7.1	7.50	28	22	7.1	7.51	28	22	7.1	7.50	28
3	22	7.6	7.21	26	22	7.5	7.46	26	22	7.5	7.47	26	22	7.3	7.47	26	22	7.4	7.45	26
4	22	6.6	7.28	25	22	6.4	7.30	26	22	6.5	7.31	26	22	6.5	7.24	26	22	6.5	7.22	25
5	22	6.9	7.26	30	22	6.9	7.25	30	22	6.9	7.29	30	22	6.9	6.96	30	22	6.7	6.99	30
	22	7.0	7.56	28	22	7.0	7.56	28	22	7.1	7.57	27	22	6.9	7.56	27	22	6.9	7.48	28
6							7.46		22	7.0	7.46	27	22	6.9	7.27	26	22	6.8	7.56	27
(22	6.7	7.27	30	22	6.9		28						7.4	6.94	28	21	7.3	7.15	30
8	21	7.5	7.25	28	21	7.4	7.23	29	21	7.4	7.19	28	21				21	7.3 5.9	7.13	29
9	21	5.8	7.35	29	21	5.9	7.34	28	21	5.7	7.35	29	21	5.8	7.35	28				
10	21	5.9	7.33	29	21	6.1	7.31	29	21	6.1	7.38	29	21	6.1	7.37	28	21	6.0	7.29	29

CLIENT: SAIC STUDY NUMBER: 7814

PROJECT:

RAYMARK 1999

PARAMETER:

Water Quality Data

E-4-SED-SMP		Dank	neto A			Danli	cate B			Renli	cate C			Replic	ate D			Replic	ate E	
Day		Replic	cate A			•				•						Cal	Tomo	nά	pН	Sal
	Temp	D.O.	Hq	Sal	Temp	D.O	ρН	Sal	Temp	D.O.	рН	Sal	Temp	D.O.	pН	Sal	Temp		•	
0	22	6.8	4.29	27	22	6.9		27	22	6.9	3.90	27	22	6.9	4.41	27	22	6.9		
1	22	6.4	7.37	29	22	6.8	7.16	29	22	6.7	6.74	29	22	6.6	6.75	29	22	6.7	6.75	29
ż	22		6.84	28	22	7.0	5.51	27	22	7.1	5.04	27	22	7.0	5.51	29	22	7.1	5.38	
2	22	7.5	7.25	27	22	7.5	7.23	26	22	7.5	7.20	27	22	7.5	7.16	28	22	7.4	7.17	28
J	22			27	22		7.14	26	22	6.8	7.11	27	22	6.6	7.12	28	22	6.7	7.14	27
4													22	7.0	6.99	30	22	6.9	6.85	30
5	22	6.8	6.75	30	22	6.9	5.89	30	22	7.0	6.53	30	22	7.0	•					
6	22	6.9	7.47	27	22	7.1	6.86	27	22	7.1	7.10	28	22	7.1	7.26			7.0	-	28
7	22	6.9	7.26	27	22	7.0	6.48	26	22	7.0	6.48	28	22	6.9	6.89	27	22	6.9		
8	21	7.6		-:	21		6.06		21	7.5	6.44	28	21	7.5	6.93	28	21	7.5	6.60	29
_											6.97	27	21	5.9	7.02	26	21	5.8	7.05	29
9	21	5.8	7.22	27	21	5.7	6.99	26	21	5.9										
10	21	6.1	7.28	27	21	6.1	7.17	27	21	5.9	7,16	27	21	5.8	7.25	27	21	5.7	7.28	28

F-1-SED-SMP

Day		Replicate A Replicate B								Repli	cate C			Replic	ate D			Replica	ate E	
Day	Temp	•	pН	Sal	Temp	•		Sal	Temp	D.Ö.	pН	Sal	Temp	D.Ò.	рΗ	Sal	Temp	D.O.	рΗ	Sal
0	22	6.9	7.99	29	22	6.9				6.9	7.95	29	22	6.9	8.00	29	22	6.8	7.90	29
1	22	7.1	7.74	31	22	6.9	7.91	31	22	6.8	7.98	31	22	7.0	8.04	31	22	6.9	8.04	31
2	22	6.8	7.78	30	22	7.0	8.03	30	22	7.0	8.05	30	22	7.0	8.06	29	22	7.1	8.07	29
3	22	7.3	8.14	28	22	7.4	8.16	29	22	7.5	8.17	29	22	7.4	8.17	29	22	7.4	8.16	
4	22	6.8	8.14	28	22	6.7	8.29	28	22	6.7	8.32	28	22	6.8	8.27	28	22	6.6		28
5	22	6.8	8.43	30	22	6.8	8.58	30	22	6.7	8.51	30	22	6.8	8.44	30	22	6.8		30
6	22	6.9	8.43	29	22	7.0	8.58	29	22	7.0	8.58	29	22	7.0	8.47	30	22	6.9	• • • • •	
7	22	6.8	8.46	29	22	6.9	8.49	29	22	6.9	8.48	29	22	6.9	8.47	30	22	6.9		29
8	21	7.5	8.40	29	21	7.5	8.33	30	21	7.5	8.36	30	21	7.5	8.38	31	21	7.5		30
9	21	5.9	8.45	29	21	6.1	8.44	30	21	6.3	8.44	29	21	5.9	8.45	30	21	6.0		30
10	21	6.1	8.33	29	21	6.1	8.33	29	21	6.1	8.38	29	21	6.3	8.38	29	21	6.2	8.45	30

SAIC

STUDY NUMBER: 7814

PROJECT:

RAYMARK 1999

PARAMETER:

Water Quality Data

F-2-SED-SMP		Replic					_							Danka	-4- D			Replica	ate F	
Day				-	cate B			•	cate C		_	Replic		0-1	T	-		Sal		
•	Temp	D.O.	pН	Sal	Temp	D.O	pН	Sal	Temp			Sal	Temp	D.O.	•	Sal	Temp	6.8	рН 7.96	29
0	22	6.6	8.01	29	22	6.6	7.99	29	22	6.7	7.98	29			7.98	29	22			31
1	22	6.4	8.03	31	22	6.6	8.04	31	22	6.6	8.06	31			8.07	31	22	6.9		30
2	22	6.7	8.10	29	22	6.9	8.10	30	22	7.0	8.11	30			8.10	30	22	6.9 7.5		29
3	22	7.4	8.13	29	22	7.5	8.11	28	22	7.4	8.10	29			8.08	29	22	7.5 6.7	8.06	2 3 27
4	22	6.8	8.10	27	22	6.9	8.08	27	22	6.6	8.07	28			8.06	28	22	6.8	8.10	30
5	22	. 6.8	8.14	30	22	6.8	8.12	30	22	6.8	8.09	30				30	22 22	7.0	8.06	30
6	22	7.1	8.16	29	22	7.1	8.11	29	22	7.1	8.10	29				29	22	6.8		28
7	22	6.9	8.09	28	22	7.0		28	22	6.7	7.86	28			7.92	29	21	7.5		30
8	21	7.5	7.65	28	21	7.5	7.96	30	21	7.4	7.86	29			7.97	31		6.3		29
9	21	6.2	8.27	28	21	6.3		30	21	6.1	8.02	28			8.06	30	21	6.4		28
10	21	5.9	8.18	28	21	6.1	8.08	29	21	6.3	7,97	29	21	6.2	8.04	29	21	0.4	0.04	20
F-3-SED-SMP										D !				Donlie	ate D			Replica	ate F	
Day		Replic	cate A			•	cate B				cate C	0 -1	T	•		Sal	Temp	•	рH	Sal
	Temp	D.O.	pН	Sal	Temp		•	Sal	Temp			Sal	Temp	D.O.	•	3ai 28	22	6.5	•	28
0	22	6.6	8.04		22	6.5			22	6.5	8.08					30	22	6.3		30
1	22	6.5	8.06	30	22	6.6		30	22	6.3	8.10	30				30 30	22	7.0		29
2	22	6.6	8.11	29	22	6.8	8.16	30	22	7.0	8.18	30			8.17	28	22	7.4		28
3	22	7.3	8.08	28	22	7.4	8.12		22	7.5	8.14	28			8.15	28 28	22	6.8		28
4	22	6.6	8.11	29	22	6.8	8.12	30	22	6.6	8.12							6.8		30
5	22	6.8	8.18	30		6.7			22	6.8	8.18					30		7.1	8.16	28
6	22	7.1	8.18	29		7.1	8.18	29	22	7.1	8.17	29				28	22			28
7	22	6.8	8.15	27	22	7.0		28	22	7.0	8.13					28		6.9		
8	21	7.4	7.99	29	21	7.4	8.19		21	7.4	8.18							7.5		29 20
9	21	6.1	8.34	28	21	6.3	8.42	28	21	6.2	8.41	29				29		6.1		29
10	21	5.9	8.33	28	21	6.1	8.29	28	21	6.3	8.31	29	21	6.3	8.31	29	21	6.3	8.16	28

STUDY #	7314		SAMPI Co	EID: ntro	1		DILUE	NT: Har Est	npton uary	START	DATE:		
DAY		RE	PA			REF	• В			RE	PC		INITIALS
	TEMP	D.O.	рН	SAL.	ТЕМР	D.O.	pН	SAL.	TEMP	D.O.	рН	SAL.	
0	25	6.6	7.93	3∞_	22	6.8	7.94	30	22	6.9	796	30	R
1	J.	1,4	7.77	<u> </u>	233	67	7.92	32	23	60	786	3,2_	LL
2	22	7.2	7,72	27	رو	7.2	7,94	30	22	7,1	7.98	30	
3	12	7.5	7.98	29	22	7.5	7.98	23	22	7.6	7.97	29	~
4	Ja	70	787	<u> </u>	99	Ų. <u>%</u>	7.89	31	વેર	68	7.90	30	14
5	22	7.0	8.07	30	22	6.9	8,00	30	22	6.8	2.99	30	KOB
6	22	7.1	7,98	30	22	7,1	7.97	30	حرر	7.1	7.96	30	~
7	22	7.1 51	7.87	30	22	7.1	7.86	30	2 ور	7.1 5.9	7.86	30	1
8	25	7.2	7.90	27	21	7.2	6.92	25	21	7.2	6.87	28	cv
9	21	59	8.03	30	ચા	539	8,7.	30	ا لا	روز	85%		Wh
10	81	و عا	8.18	30	A)	6.4	8.19	30	aı	હિ.પ	8.17	30	C.F
# ALIVE		18	3			ac)			10			14

DAY		REI	P D			REF	P E				AMMON	iA*	
	TEMP	D.O.	pН	SAL.	TEMP	D.O.	рH	SAL.	A	В	С	D	E
0	ನ್ನ	6.9	7.95	30	حد	69	795	30	X	111	111	////	111
1	J _A	L.S.	786	<u> ક</u> a	રજ	18	777	32					
2	22	7.0	7.98	<i>3</i> 0	22	6.9	7.95	30					
3	22	75	7,94	28	22	7.6	7.95	29					
4	92	७ %	7.83	31	રુટ	(1	788	31					
5	22	6.7	8.03	30	22	6.8	8.09	30	KIO	11	///	11/	11,
6	22	7.1	7.95	30	22	7.1	7.96	-30					
7	22	7.6	7.86	3c	وفر	7,54	7.91	30					
8	2'	ď /×	7.08	7	21	7.1	7.96	5					
9	a١	lel	T03	વેશ્વ	21	43	708	29					
10	21	4	8.17	30	ઢા	le.3	8.14	30	24	111	///	///	111
# ALIVE		16)			1	٥						

⁻ Ammonia values on Day 0 were measured on the porewater. Ammonia on Days 5 and 10 were measured on the overlying water.

STUDY	# 7814 - (1	SAME	PLE ID:	· <u>-</u>		DILUI	ENT: Ha		STAF				-
			C-1	- < =	-5146	a		Es	stuary	SIAF	RT DATE	:		
DAY	7	===		-36.	7-31-11	\ 								
		, , , , , , , , , , , , , , , , , , ,	EP A			RE	EP B			R	EP C		INITIAL	≡ s
	TEMP	D.O.	рH	SAL.	TEMP	D.O.	рН	SAL.	TEMP	D.O.	рН			
0	22	6.8	801	29	22	6.8	8.01	29	2,2	6.8	7.99	SAL	.0	┥
1	23	مايا	7.99	31	<u>а</u> д.	12	108	31	33	1.A	8.01.	29	&	_
2	22	6.8	8.00	30	22	7.0	8.10	T				31	ul	+
3	22	7.4	2.12	29	22	1.4	8.12	37	22	6,4	8.10			4
4	20	38	812		24	1,9	8.16			7.4	8.12			4
5	22	6.8	8.37	30	22	6.8	8.37	30	22 22	6.7	8.15		Uh	-
6	22	6.9	8.31	30	22	7,1	8.32	30			8.30	30	XKB	-
7	22	7.0	8.18	.3c	22	7:1			22	7.1 7.1 5.4	8.31	<i>3</i> o		-
8	21	7.1	જ.06	28	71	70	8.29 8.32	30 28	22		8.23			4
9	21	6.5	841	38	21	<i>U</i> 2	842		21	7.3	8.50	27	$\frac{\omega}{\omega}$	1
10	21	6.3	8.48	29	21				الج	63	817		KL	1
# ALIVE	<u> </u>	13	0.40	۵-۱	αι		8.46	<u>a</u> 9	۵۱	<u>له.ه</u>	8.48	29	<u> </u>	*
						13				9				

DAY	1	RE	EP D			DE	PE		7				
<u></u>	TEMP	D.O.	рH	CAL	 	T	Т				AMMON	IA*	
0			T	SAL.	TEMP	D.O.	pH	SAL.	A	В	C	D	E
ļ	22	6.7	820	29	22	67	8.02	29	~	14	111	11/1	121
1	33	1_A	8.17	31	22	63	801	31	-0		107	1021	100/
2	22	6.9	8.10	28	32	6.9	8.09						
3	22	7.3	2.11	27	22	7.4	8.10						
4	22	U.S	8.14	31	22	1,7	815	30					
5	22	6.7	8,35	30	22	6.7	8,33	30	XFB				
6	22	6.5	8,18	30	22	6,9	8.28		<i>λ</i> β				
7	22	6.9 5.8	3.25	29	22	6.9		30					
8	21	7.2	8:32	70	21	7.1	8.25 8.37	30					
9	21	ره (21								
10	81	62	847	29			842	30	^_				
# ALIVE		ر چو_ا	0471	47	<u>ar</u>	6.	8.47	30	<u> </u>				

Ammonia values on Day 0 were measured on the porewater. Ammonia on Days 5 and 10 were measured on the overlying water.

STUDY #	7814 -⊋		SAMP	E ID:			DILUE		npton uary	START	T DATE:		
			C-	J - Se	ED- 5	MP							
DAY		RE	PA			REI	P B			RE	PC		INITIALS
	TEMP	D.O.	рH	SAL.	TEMP	D.O.	рН	SAL.	TEMP	D.O.	рΗ	SAL	
0	22	47	8.02	28	22	48	8.04	28	22	6.8	7.98	28	-R
1	ગેત્ર	واو1	8.00	31	22	1,6	801	31	23	1,4	798	3(w
2	22	6.4	8.01	29	22	6.8	209	23	22	7.0	8.09	38	
3	22	7.3	9.17	29	22	7.3	8.11	29	يد	7.3	8.12	28	_
4	33	٠Ç _i	8.11	29	32	1,8	8.13	30	ಎ೩	47	8,14	30	luh
5	22	6,6	8.35	30	22	5.6	8.08	30	22	6.5	8.30	30	KAS
6	22	6.9	8.29	30	22	7,0	8.28	29	22	7.0	8.27	29	_
7	22	7.0	8.27	29	22	7.0	8.24	يمر	22	7.0	8.23	29	_
8	21	7.2	8.07	28	21	7.2	8.22	28	21	7.2	8.23	29	
9	ત્રે !	25	831	ત્રવ	21	しつ	දිදුව	<u>څ</u> ک	21	أجآ	832	æ9	W
10	9/	٥. ما	839	30	a۱	۱.عا	839	ક૦	aı	۱.ما	835	30	Ce
# ALIVE		14				١a				5			

DAY		RE	PD			REI	PE			"	AMMON	Α•	
	TEMP	D.O.	pН	SAL.	TEMP	D.O.	рН	SAL.	Α	В	С	D	E
0	22	67	799	28	22	6.7	9.03	28	8	111	111	111	11/1
1	22	15	799	31	22	しら	797	31					
2	ريد	7.1	8.10	28	22	7.1	8.11	28					
3	22	7.3	8.14	28	22	7.2	8.14	8 تو					
4	ઢઢ	<i>US</i>	9.13	29	32	59	814	29					
5	22	6.6	8.32	30	22	6.6	8.24	30	XES				
6	22	7.0	8.27	29	22	7.0	8.26	29					
7	22	7,0	8.26	29	وزر	7.0	8.26	30					
8	21	7.2	8.30	27	21	7.3	8.21	27					
9	ی۱	ر ک	833	25	3	9	834	a8					
10	સ	نی	836	B	8١	6.9	834	29	Cd				
# ALIVE		3				5	-						

^{* -} Ammonia values on Day 0 were measured on the porewater. Ammonia on Days 5 and 10 were measured on the overlying water.

STUDY ;	¥ 7814 – .	3	SAME	LE ID:			DILUE	NT: Ha	mpton		T DATE	:	
			C-	3-50	E D- 51	18		Est	tuary				
DAY		RE	РА			RE	PB			RI	EP C		INITIALS
	TEMP	D.O.	рН	SAL.	TEMP	D.O.	рН	SAL.	TEMP	D.O.	рH	SAL	
0	22	6.7	9.00	28	22	6.8	8.01	28	2)	6.8	7.47	28	~
1	À	1.5	195	31	22	4.6	796	31	22	10.6		31	R
2	22	7.0	8.10	29	22	7.1	8.03	29	22				
3	22	7.2	Pos		22	7.2	8.02	38	22	7.1	7.77		
4	22	(J.)	807	29	22	مایا	8.05		32	. ,	8.01		~
5	22	6.7	8.07	30	22	6-7	7.92	30		6.7	815		w
6	22	69	8.10	29					22		7.98	30	763
7	22				يد	6.9	7.87		22	6.9	7.87	27	
8	21	7.2	7.94		22	6.9	7.80	28	22	6.9	7,79	28	
9	21	59		21	21	7.7	-i, 68		21	7.1	2.7/	२५ -	
10		5.8		<u>29</u>	21	<u> </u>	8.01	ಶ _∈ ।	21	57	791	30	uh
# ALIVE	<u>a</u> 1	3.8	8.16	39	ઢા	(b. \)		29	91	5.5	8.01	30	Ce
						<u> </u>				a		İ	

DAY		RE	PD			RE	PE				AMMON	ΙΔ•	
	TEMP	D.O.	рН	SAL.	TEMP	D.O.	рH	SAL	A	В	С	В	E
0	22	6.8	298	28	22	6.9	7.66	28	1	///	1//	///	117
1	22	[47	795	31	જેત્રે	الميزا	795	31		107	777		
2	22	7.1	7,97	29	22	7.0	7.99	27					
3	22	7.3	7.99	38	22	7.1	7,99	28					
4	34	15	819	29	02	ملنا	8.16	30					
5	22	6.7	8:02	30	22	6.8	8.01	30	XB				
6	22	7.0	7,93	29	22	7.1	7.93	30					
7	22	7.0	7.79	28	22	7.0	7.82	28					
8	21	7.2	7.84	29	21	7.1	7.85	27					
9	ઢા	tio	790	3 0	31	58	755	30					
10	<i>ڪر</i>	5.6	8.0\	30	aı		8.03	ga	14				
# ALIVE		Ø					Ø	<u> </u>	-				

Ammonia values on Day 0 were measured on the porewater. Ammonia on Days 5 and 10 were measured on the overlying water.

STUDY #	7814 - 4		SAMP		D-SM	P	DILUEI	NT: Han Esti	npton uary	START	DATE:		
DAY		RE				REF	В			RE	P C		INITIALS
	ТЕМР	D.O.	pН	SAL.	TEMP	D.O.	рН	SAL.	TEMP	D.O.	рН	SAL.	
0	22	6-1	766	30	22	61	7.90	30	22	66	7.92	30	L
1	$\partial \lambda$	5 9	792	33	23	10	15J	33.	33	10.2	795	33	u
2	22	6.9	7.98	29	22	7.0	7,97	28	22	7.0	7.94	30	_
3	22	7.1	7,97	29	22	7.2	7.87	29	22	7.3	7.86	ود	~
4	22	آ. ما	806	29	22	7.0	793	ૂવ	94	4	19i	30	lil
5	22	6.7	2.95	30	22	6.8	7.91	30	22	6.8	7.90	30	KIL
6	32	6.9	7,89	29	22	7.0	7.80	28	عدر	7.1	7,79	29	
7	22	7.0	7.70	29	2 تر	7.0	7.70	રક	12	7.1	7.71	29	_
8	21	7.3	7.54	29	21	7.3	7.71	29	21	7.3	7.70	I	cu
9	21	62	788	28	21	63	780	æ	એ I	لمما	733	N	W
10	<u>a</u> ı	(e.0	7.81	29	<i>a</i> ı	0.0	789	29	aι	6.3	7.89	a _વ	C
# ALIVE		\	7			\ <u></u>	λ		١	\neg			

DAY		RE	PD			REF	, E				AMMON	Α.	
	TEMP	D.O.	рН	SAL.	TEMP	D.O.	pН	SAL.	A	В	С	D	E
0	22	68	786	30	22	6.8	783	30	7	(11		16	101
1	32	130	794	33	ನಿತ	S	TAI	33					
2	يرد	7.0	7.93	30	22	7.0	7.88	29					
3	يد	٦٠١	7.87	28	22	7.2	7.83	27					
4	<u> </u> એ	مارا	796	29	32	ક્રિ	797	29					
5	22	6.8	2.81	30	22	6.8	7.80	30	2028				
6	22	7.1	7.80	<i>ટ્ર</i> ૧	22	7.1	7,77	28					
7	22	7.0	7.70	29	22	7.0	7.59	29					
8	21	7.3	7,61	50	21	1,3	7.79	31					
9	91	しる	7.79	29	31	la	1.82	30					
10	21	63	7:34	29	21	53	789	30	Ct				
# ALIVE			9			1	ھــ						

⁻ Ammonia values on Day 0 were measured on the porewater. Ammonia on Days 5 and 10 were measured on the overlying water.

STUDY #	7814 - 5	5	SAMP	•	ED-51	чР	DILUE	NT: Ha Est	mpton uary	STAR	T DATE:		
DAY		RE	PA			RE	PB			RE	EP C		INITIALS
	TEMP	D.O.	рН	SAL.	TEMP	D.O.	рН	SAL.	TEMP	D.O.	рH	SAL	
0	32	6.6	800	28	22	6.6	8.B	28	22	66	7.78	28	×
1	એ	14	791	30	22	1,4	797	30	94	105	800	3.5	111
2	22	6.8	8.12	30	22	7.0	8.12	29	22	7.1	8.13	30	
3	22	7.4	8.06	28	22	7.4	8.12	28	ے درے	7.3	8.14	عد	
4	र्ग	19	791	30	طائم	کی وا	790	24	42	4.8	7.85	30	ul
5	.22	6.8	8.31	30	22	6.8	8.26		22	6.8	8.25	30	265
6	22	6,9	8.18	28	22	7.0	9.23	28	22	7. l	8.23		/(n2
7	22	6.9	2.20	~?દ	ج چھ	7.0	8.21		20	7.0	8.19	29	
8	2(7.4	8.19	28	21	7.3			21	7.2	8.15	70	Cu
9	31	گاکورن	823	30	જી 1	15	820		21	لدله	825	જ	w
10	21	١.عا	829	30	a١	60	78.8		21		8.24	30	CA
# ALIVE		15	5			١٧				14	<u> </u>		

DAY		RE	PD			RE	PΕ				AMMON	ΙΑ•	
ļ	TEMP	D.O.	Hq	SAL.	TEMP	D.O.	рН	SAL.	Α	В	С	D	E
0	22	6.5	8.03	28	22	6.6	8.02	28	8	111	//	116	22
1	<i>3</i> 2	162	801	3.1	m	10.1	8.00	31)				20	
2	رر	7.0	2.11	29	22	7.0	8.09						
3	ور	7.3	2.12	٤ړ	دو	٦.١	8.09						
4	32	19	780	30	22	ا بحن	781	30					
5	22	6.8	8.20	30	22	6.3	7.96	30	XIIS				
6	22	7.1	2,19	28	22	7.1	8.09	30					
7	22	7.0	8.19	28	22	6.9	8.05						
8	21	7,1	8.13	R R	21	31	8.08	32					
9	12.	l05	718	ત્રવ	21	<i>احوا</i>		35					
10	<i>a</i> \	6.4	8,25	29	ವಿ।	6.2	8.18	30	Cá				
# ALIVE		5				5	-		·				

Ammonia values on Day 0 were measured on the porewater. Ammonia on Days 5 and 10 were measured on the overlying water.

STUDY #	7814 - (-	SAMP	LE ID:	D-5M	۱۴		NT: Hai			T DATE:]
DAY		RE	P A			REI	P 8			RE	P C		INITIALS
	TEMP	D.O.	рН	SAL.	TEMP	D.O.	рН	SAL.	TEMP	D.O.	1		
0	22	6.7	8.03		22	6.7	8.06		22	6.8	9.02	29	8
1	રૂઢ	15	797	30	33	15	799	30	22	4	7.99	30	111
2	22	6.6	8.08		22	6.8	8.05	29	22	6,9	8.03		200
3	32	7.3	8.05		22	7,4	8.08	28	22	7.4	8.07	28	
4	તેઠ	70	315	Z.	22	7.0	8.17	29	32	69	815		KL
5	22	6.6	8.08	30	22	6.7	8.11	30	22	6.8	8.17	30	XRS
6	22	٦٫٥	8.09	29	22	7.0	8.09	30	22	7.1	8.14	29	~
7	22	6.8	8.08	3c	22	6.9	8.03	29	ري	6.9	8.08		1
8	21	7.4	8,07	30	21	73	7.93	30	21	7.2	8.12	30	cw
9	21	لەن	323	,29	21	55	SDIC	30	.21	しつ	824	æ	W
10	aı	62	882	29	97	6.\	8.11	30	aı	6.0	8.26	ଥଦ	CE
# ALIVE		10	<u> </u>			12				10			

DAY		RE	PD			RE	۶ E				AMMON	IA*	
	TEMP	D.O.	рH	SAL.	TEMP	D.O.	рН	SAL.	Α	В	С	D	Е
0	22	6.8	7.96	29	a2	67	8.00	29	L	111	//	///	111
1	98	13	103	30	32	1,2	7A6	30					
2	22	6.9	8.06	29	.32	6.9	8.05	30					
3	22	7.4	8,07	28	در	7.5	8.01	29					
4	37	la	814	28	એ	68	806	29					
5	22	6.8	8,01	30	22	6.7	8.05		KEB				
6	22	7.0	8.00	29	22	7.0	7.98	30					
7	ور	6.9	7.93	<i>3</i> 0	22	6.9	7.87	29					
8	21	7.2	7.97	30	21	7.3	7.96	31					
9	ગ	58	816	30	<i>ي</i> ر	51	8.10	29					
10	ઢા	٥.0	8.15	30	a.i	5.9	8.13	a 9	(d)				
# ALIVE		_ 7				٦							

⁻ Ammonia values on Day 0 were measured on the porewater. Ammonia on Days 5 and 10 were measured on the overlying water.

STUDY :	† 7814 –	7	SAMP	LE ID:			DILUE	NT: Ha	mpton		T DATE		
				D.4. 5	こり-5	MP		Es	tuary				
DAY		RE	PA			RE	P B			R	EP C		INITIALS
	ТЕМР	D.O.	рH	SAL.	TEMP	D.O.	pН	SAL.	TEMP	D.O.	рН	SAL	
0	22	66	804	29	22	6.6	8.01	29	22	6.6	7.98	29	
1	99	41	835	30	22	1.5	807	.30	ッツ	57	807		X
2	22	6.5	8,25	30	22	6.7	8.25	29	22	6.8	8.24	29	110
3	22	7.3	8.30		22	7.3	8.31	28	22	7.4			·
4	22	69	8.55	<i>3</i> ઇ	92	i.4	8,39	عة 3ì	32		8.31	28	<u> </u>
5	22	6.7	8.44	30	22	6.7	8.43	30	22	6.6	8.40	30 30	XXS
6	22	6.8	8.42	30	22	10	2.41	29	22		 		/C&25
7	22	4.7	8:36	,29	22	6.8				6.9	8.40	30	
8	21	73	8.33	3)	21	7.3	8.37 8.35	28	21.	6.8	2.35	39	
9	21	1,0	847	29	21					7.3	834	30	Cay .
10	21	5.6				(0,2_	848	: ₂)C ₁	91	(81	SAS	30	UL
# ALIVE		ع.و إبرا	8,44	29	aı	5.8	8.50	89	<u>g/</u>		8.47	89	a
						16				- \	೩		加

DAY		RE	PD			RE	PE				AMMON	ΙΔ*	
	TEMP	D.O.	На	SAL.	TEMP	D.O.	рH	SAL.	A	В	С	В	E
0	22	6.6	7.97	29	22	6-5	7.97	29	5/	111	//	1/2	11
11	aa	L3	805	31	<u>ನಿ</u> ೩	6.1	805	30		166	00		
2	22	6.8	8,23	29	22	6,9	8.23	30					
3	22	7.5	8.31	27	22	7.4	8.31	29					
4	32	801	835	35	22	6.8	8.37	31					
5	22	6.6	8,43	30	22		8,48	30	XB				
6	22	7.0	8.40	28	22	7.0	8.43	.30					
7	22	6.8	8.40	28	22	6.8	8.41	3c					
8	21	23	8.8	70	21	7.2	8.45	31					
9	91	62	75 3	35	ا(ه	100	84	3i					
10	21	٥٠عا	854	30	81		854	30	(A)				
# ALIVE			11			4							

^{* -} Ammonia values on Day 0 were measured on the porewater. Ammonia on Days 5 and 10 were measured on the overlying water.

Ampensca aporta CHRUNIC EXPOSURE SEDIMENT ASSAY

STUDY ;	≠ 7814 - ·	४	SAMP	LE ID:			DILUE	NT: Ha		STAR	T DATE:		<u> </u>
			1	0-5. 5	5ED.5	MP		ES	tuary				
DAY		RE	PA			RE	PB			R	EP C		INITIALS
	ТЕМР	D.O.	рН	SAL.	ТЕМР	D.O.	pН	SAL.	TEMP	D.O.	pH	641	
0	22	6.5	7.85	29	22	65	7.96	29	22	66	7.87	29	X
1	33	La	Kin3	33	27	104	797	ŝ١	23	loA	TH		-
2	22	6.6	217	29	22	6,7	8.16	27	22	6.8	8.09		lil.
3	22	7.3	8,8	28	22	7.4	8.17	24	22	7.4	8.18		
4	32	is	831	29	J.A.	68	8.17	ગ્રુલ	32	6.8	8.72	28 25	KL.
5	22	6.5	8.36	30	22	6,5	8.29	30	22	6.6	8,31	30	XRB
6	22	6.7	8.31	29	22	6,9	8.23		22	7.0			70123
7	22	6.8	8.12	29	22	6.8	8.15	29	22		8.24	9 تر	
8	21	7.4	8,09	29	21	7.3	8,11	31	21	6.9 7.4	8.15 8.12	<i>র</i> १ 3০	
9	સા	40	93A	38	Δ٦	رين	835	29	2	"/	824		Cir/
10	ઢા	5.8	8.30	28	<i>a</i> 1	= .	827	28	aı			<u>અ</u> a9	lih
# ALIVE		12				17	<u>- v. 11</u>	<u> </u>	~(10	2.06	<u>u 0</u>	

DAY		RE	PD		Γ	RE	PE		Ţ 				
<u></u>	TEMP	D.O.	рН	SAL.	TEMP	D.O.		T	 		AMMONI	A*	
0	aλ	6.6	7.88	29	22	6.5	7.97	SAL	7	///	_ c	D / / /	E
1	J.a	63	 	30	2 2	رجياً	798	3)	a	1 2 7	(111	1//
2	22	6,8	8.09	30	22	4.8	8.08						
3	.22	7.3	8.15	28	22	7,3	8.09	29					
4	n.	ط.ها	8.21	28	22	4 ا	8.15						
5	22	6.6	8.29	30	22	6.6	8.36	30	XRD				
6	22	7.0	8.25	29	22	6.9	8.23	30					
7	22	6.8	8.17	28	22	6.8	8,15	30					
8	21	7.5	8.11	33	21	7.2	9,14	31					
9	9)	60	821	30	7	(02	१२०	<u>څ</u> (
10	21	0.0	82	29	a۱	6.1	821	ga	C.				
# ALIVE		12				18		<u> </u>					

^{* -} Ammonia values on Day 0 were measured on the porewater. Ammonia on Days 5 and 10 were measured on the overlying water.

CT. ID.		~!!!	henoce	anuii	ia CUK	UNICE	スという	UKE S	EDIME	NT AS	SAY		
STUDY #	‡ 7814 —	٩	SAMP	LE ID:			DILUE	NT: Ha		STAR	T DATE	:	
			2	٠-6-	SED	-5 mg		ES	tuary				
DAY		RE	PA			RE	P B			R	EP C		INITIALS
ļ	TEMP	0.0	рH	SAL.	TEMP	D.O.	Нα	SAL.	TEMP	D.O.	рН	SAL	1
0	21	6.6	8.04	29	21	6.5	801	29	21	6.8	8.02		2
1	33	101	793	31	シス	6.1	800	31	23	(,4	795	31	46
2	22	6.4	207	<i>3c</i>	رو	6,6	8.08	30	22	6,9	8.11	30	UL
3	ود	7.3	8.04	28	عص	7.4	8.11	28	32	7.4	8.12	29	
4	ોઢ	LA.	808	30	da	65	812	29	22	1.4	8.15	29	112
5	22	6.1	8.13	30	22	6.5	8.18	30	22	6.6	8,26	30	XES
6	22	6.5	8.10	29	22	6.8	8.10	30	22	6.9		30	~~~ ~~~
7	72	6.6	7.49	ЗΊ	22	6.7	7.95	38	22	6.9	8.19		
8	21	7.3	306	29	21	7.4	800	31	21		8,25	28 30	ے دش
9	31	ر د	815	30	21	ري	3.11.8	31	21	62	8416	32	
10	21	7	0 - 1	20		5 1	V.,.~	00	-~ -	0.5	الم الم	<u>⊃~</u>	hh

DAY	<u></u>	RE	PD			RE	PE				AMMON	Α•	
	TEMP	D.O.	pН	SAL.	ТЕМР	D.O.	рН	SAL.	A	В	С	D	E
0	22	10.8	8.00	29	21	4.8	7.96	29	8	1//	16	7./. /	///
1	<i>3</i> 2A	63	802	31	22	6.2	873	31				7.2.0	
2	22	6.9	811	30	22	7.1	8.13	30					
3	22	7.4	2.13	23	22	7.4	8.08	30					
4	NA.	LIL	8.17	29	એ	1:58	8.15	A				•	
5	22	6.6	8.21	30	22	6.6	8.25	30	KES				
6	22	6.9	8.19	<i>3</i> 0	22	7.0	8,18	30					
7	22.	6.8	. 8.16	28	ورو	6.8	813	ص3ـ					
8	21	7.4	5,50	31	21	7,3	8.21	71					
9	ગો	しろ	क्या	3i	21	104	856	30					
10	21	0,0	860	30	16	6.8	863	30	<u></u>				
# ALIVE		ф				6		~					

ALIVE

⁻ Ammonia values on Day 0 were measured on the porewater. Ammonia on Days 5 and 10 were measured on the overlying water.

Ampensca apolia CHRONIC	EXPOSURE SEDIMENT ASSAV
	EXI COURE SELIMENT ACCAS

			Pensca	anuli	a Chr	ONIC E	XPUS	UKE S	EDIME	NT AS	SAY		
STUDY ;	¥ 7814 – į	10	SAMP	LE ID:	ED -			NT: Ha			T DATE	:	
	ī —		-				<u> </u>			<u> </u>			
DAY		RE	EP A			RE	PB			R	EP C		INITIALS
	TEMP	D.O.	рн	SAL.	TEMP	D.O.	рН	SAL.	TEMP	D.O.	рН	SAL.	3
0	21	6.7	8.64	28	21	6.7	800	28	21	68	8.03	28	. X
1	ડેટ	14	7.78	29	072	1,2	FFE	37	તૈર	(0)	8.00		1el
2	22	6,5	7.97	29	22	6.7	7.93	29	22	70	8.02		<u> </u>
3	22	7.2	8.06	26	22	7.4	8.04		22	7.4	8.03	i	
4	22	7.0	794	30	33	7.2	7.99	29	22	4.8	798	30	<u>u</u> _
5	22	6.4	7.89	30	22	6.8	8.00	30	22	6.9	8.02	30	KES
6	22	6.8	7.93	28	22	6.8	8.00	28-	22	6.9	8.00		-
7	22	6,7	7.96	<i>3</i> 8	22	6.8	7.86	l 1	22				
8	21	7.1	7,73	30	21	7.3	7.90		51	6.9 7.3	7.26		
9	એ !	58	8113	ત્રંવ	21	لىن	818		ر ا لار	Lel	806		Uh
10	aı	۱.ع)	8.11	29	aı	5.8		29		6.0	8.06		Co
# ALIVE		2)				0))	<u>50</u>	7_

DAY		RE	PD			RE	PE		T		AMMON	IA.	
	TEMP	D.O.	рН	SAL.	ТЕМР	D.O.	рН	SAL.	A	В	C	Б	
0	(چ	6.8	7.99	28	72	6.8	7.96	28	8	//	///	///	E
1	<i>≩</i>	(,1	804	39	<i>6</i> 8.	LA	804	29		//	2 7 5		
2	22	6,9	8.05	_3c	22	7.1	8.05	1					
3	22	7.4	8.03	28	22	7.5	8.02						
4	22	1.8	799	30	22	V3	7.92	29					
5	22	6.8	8.02	30	22	6.9	8.01	30	XIB			-//	
6	22	7.0	8.00	28	22	7,0	7.95	29					
7	22	7.0	7.92	30	22	6.9	7.92	3c					
8	121	7.4	7.92	30	21	7.4	7.88	31					
9	21	しい	in5	3	ે ।	42	80A	<u>3</u> ر					
10	21	1.0	805	29	31	6.2	8.04	29	C				
# ALIVE		6)			$\widehat{\Omega}$							

^{&#}x27; - Ammonia values on Day 0 were measured on the porewater. Ammonia on Days 5 and 10 were measured on the overlying water.

STUDY #	7814 - \	\	SAMPI) - SM	P	DILUE	NT: Hai Est	mpton uary	STAR	T DATE:		
DAY		RE	PA			RE	P B			RE	PC		INITIALS
	TEMP	D.O.	ρН	SAL.	TEMP	D.O.	рН	SAL.	TEMP	D.O.	рН	SAL.	
0	21	67	242	27	21	6.8	7.09	27	21	6.8	7.29	27	se
1	97	ليكم	787	35	333	1.4	765	39	લેક	L4	762	29	ich
2	22	7.0	2.02	30	22	7.1	7.53	26	22	7,2	7.51	27	
3	22	7,3	7.96	26	22	7,4	7,46	26	22	7.5	7,44		-
4	4.2	1,14	7.74	<u>ي</u> مال	22	42	7.57	27	33	43	749	26	116
5	22	6.5	2.42	30	22	6.8	7,25	30	22	6.9	2.37	30	XFS
6	22	6.2	7,23	27	22	6.7	7.23	27	22	6.9	7.33	27	
7	22	6.7	7.53	37	22	6.8	7.47	26	22	6.9	7,36		_
8	21	7.0	€.29	H	21	7,2	6.54	27	21	7,5	6.84	27	
9	аï	しら	768	27	a .	しら	7.49	.37	ગ	4.0	743	27	lih
10	21	5.7	7.42	28	â١	۱.ها	733	ನ್ನ	21	62	721	a٦	Ü
# ALIVE			11			14				15	<u> </u>	<u> </u>	

DAY		RE	PD			RE	PE				AMMONIA* B C D E			
	TEMP	D.O.	рH	SAL.	TEMP	D.O.	рН	SAL.	Α	В	С	D	E	
0	21	6.7	7.26	27	21	6.8	7.51	27	L	//	//	//	//	
1	22	5	75%	29	ત્રત	جارا	755	39						
2	22	7.1	752	่สา	22	7.1	7.54	28						
3	22	75	7.46	26	22	7.5	7.44	26						
4	ત્રેત્ર	4	7.48	20	ત્રેઠ	1,5	7.44	مكو						
5	22	6.8	7.6.93	30	22	6.8	2.40	30	KKS	//	//	//	//	
6	22	6.7	7.34	27	22	6.8	7.32	27						
7	22	6.7	7,34	٦٤	2,2	6.9	7.32	27						
8	21	7.3	6.76	28	21	7.3	6.88	28						
9	31	43	738	2	ત્ર	42	734	28						
10	37	59		27	21	5.9	7&5	28	Ct					
# ALIVE		(<u>}</u>			14								

^{* -} Ammonia values on Day 0 were measured on the porewater. Ammonia on Days 5 and 10 were measured on the overlying water.

X X See Mis Doc. 1/28N

STUDY # 7814 - 12 SAMPLE ID:													
		E ·	2 - S c	D·SH	1P								
	RE	PA				INITIALS							
ТЕМР	D.O.	рН	SAL.	ТЕМР	D.O.	рН	SAL.	TEMP	D.O.	рН	SAL		
21	2.3	6.52	28	21	3.1	6.52	28	21				×	
23	7.0	75%	3)	જે	73	754			<u> </u>			<u>a</u>	
22	6.7	7.56	27		7.0						$\overline{}$		
22	7.4	7,44	26	22	75	731							
24	58	740		22								 i.1	
22	6.9	7.07	30	22								121	
22	6.7	7.39	27	22								KHI	
21	7.6												
7	اعر)											Cos	
					,							14	
			~	<u> </u>			<u>م ۱</u>	<u>al</u>	(e.4)	137	98	84	
	TEMP 21 22 22 22 22 22 21 21 21	TEMP D.O. 21 2.3 22 7.4 22 6.7 22 6.7 22 6.7 22 6.7 21 7.6 21 7.6 21 44 21 6.4	REPA TEMP D.O. DH 21 2.3 6.52 32 7.4 7.56 22 7.4 7.44 31 1/8 740 22 6.7 7.39 22 6.7 7.35 21 7.6 6.89 21 1/4 741	REPA TEMP D.O. DH SAL 21 2.3 6.52 28 22 1.0 756 37 22 7.4 7.44 36 22 6.9 7.07 30 22 6.7 7.39 27 22 6.9 7.35 27 21 7.6 688 27 21 6.4 735 87 21 6.4 735 87	REPA TEMP D.O. DH SAL TEMP 21 2.3 6.52 28 21 22 7.4 7.56 27 22 22 7.4 7.44 26 22 24 6.7 7.56 27 22 24 6.7 7.36 27 22 24 6.7 7.37 20 22 24 6.7 7.37 27 22 24 6.9 7.35 27 22 21 7.6 688 27 21 21 6.4 7.35 27 21 21 6.4 7.35 27 21 21 6.4 7.35 27 21	REPA RE TEMP D.O. DH SAL TEMP D.O. 21 2.3 6.52 28 21 3.1 22 6.7 7.56 27 22 7.0 22 7.4 7.44 26 22 7.5 22 6.9 7.07 30 22 6.9 22 6.9 7.35 27 22 6.9 21 7.6 658 27 21 7.3 21 1.4 7.4 27 21 7.3 21 1.4 7.4 27 21 1.3 21 1.4 7.4 27 21 1.3	REPA REPB TEMP D.O. DH SAL TEMP D.O. PH 21 2.3 6.52 28 21 3.1 6.52 22 7.4 7.56 27 22 7.0 7.54 22 7.4 7.44 26 22 7.5 7.31 22 7.4 7.44 26 22 7.5 7.31 22 6.7 7.39 27 22 6.9 7.42 22 6.9 7.35 27 22 6.9 7.34 21 7.6 688 2-7 21 7.3 6.93 21 1.4 7.4 27 21 7.3 6.93 21 1.4 7.4 27 21 7.3 6.93	REPA REPB REPA REPB REP A REP B REP	REPA REPB REPC TEMP DO. DH SAL TEMP DO. DH SAL TEMP DO. DH 21 23 6.52 28 21 3.1 6.52 28 21 3.4 6.50 33 1.0 7.56 31 22 7.0 7.54 30 22 7.1 7.49 22 7.4 7.44 26 22 7.1 7.29 23 1.4 7.44 26 22 7.1 7.29 24 6.7 7.56 27 22 6.9 6.95 30 22 6.9 6.95 25 6.9 7.35 21 22 6.9 7.42 21 22 7.0 7.43 26 7.35 21 22 6.9 7.34 21 22 7.0 7.43 27 6.9 7.35 21 22 6.9 7.34 21 22 7.0 7.43 28 6.9 7.35 21 21 7.3 6.93 21 21 7.7 6.93 29 6.4 7.35 21 21 7.3 6.93 21 21 7.7 6.93 20 6.4 7.35 21 21 7.3 6.93 21 21 7.7 6.93	REPA REPB REPC REPCC RE			

DAY		RE	PD			RE	PE		AMMONIA*					
<u> </u>	TEMP	D.O.	рН	SAL.	TEMP	D.O.	рН	SAL.	A	В	С	Б	E	
0	21	3.7	6.51	28	21	3.6	6.50	28	0	11	1	//	///	
11	<i>∞</i> a	7:5	745	30	æ	72	79,	3()	3		7			
2	22	7.0	7.45	26	22	7.0	7.43	1						
3	22	7.5	7.27	36	.22_	7,5	7.24							
4	ZZ	1/0		25	32	65	7,28	92						
5	22	6.9	7.01	30	22	6.9	7.07	30	KAS					
6	22	6.8	7.44	26	22	6,9	7.43	26						
7	يور	6.9	7,29	26	,22	6.8	7.29	27						
8	n	7.5	6.69	27	21	7.4	663	28						
9	31	inA	741	77	21	42	739	27						
10	2)	٤.٤١	14.	25	۵١	6.4	7.40) d					
# ALIVE		1				8	10		<u> </u>					

Ammonia values on Day 0 were measured on the porewater. Ammonia on Days 5 and 10 were measured on the overlying water.

See Min Go 4/200R

STUDY #	SAMPLE ID: DILUENT: Hampton Estuary START DATE:							····						
DAY		RE	PA			RE	PB			INITIALS				
	TEMP	D.O.	рН	SAL.	TEMP	D.O.	рН	SAL.	TEMP	D.O.	рH	SAL.		
0	ગ	6.4	7.47	27	2	6.5	7.53	27	21	67	7.40	27	8	
1	-SS	64	155	A	<i>3</i> 33.	63	757	29	3a	15	7.51	29	ul.	
2	ورے	6.9	7,44	27	دد	7.1	7.47	27	22	7.1	7,50			
3	22	7,6	7.21	26	72	7.5	7.46	26	22	7,5	7,47	24	*::	
4	32	<i>ایا</i>	728	ગેડ	32	44	7,20	λ .	અ	V 5	731	26	uh	
5	22	6.9	7.26	30	22	6.9	2.25	30	22	6.9	2.29	30	XAL	
6	22	7.0	7.56	22	22	7.0	7,56	28	22	7.1	7,57	٦٦	~ .	
7	22	6.7	7,27	7	ورد	6.9	7.46	28	22		7.46		_	
8	21	7.5	7.25	28	21	7,4	7.23	29	21	7,4	7,17		cr	
9	21	5 %	ાઝડ	ξŞ	ત્રા	59	734	38	ત્રા	5.7	735	್ಞಾ	W_	
10	aı	5.9	733	29	a١	6.1	7.31	29	aı	۱,ع)	l	29	Ce	
# ALIVE			16	,			19			- [1	7.0 7.46 27 7.4 7.17 28 5.7 755 29			

DAY		RE	PD			RE	PΕ		AMMONIA*					
	TEMP	D.O.	рН	SAL.	TEMP	D.O.	рН	SAL.	Α	В	С	В	E	
0	21	6.8	7.41	27	21	6.7	7.37	77	8	//	//	///	///	
1	2a	7.3	عرکار	3	22	<i>હે</i> .જી	751	379						
2	22	7.1	7,57	28	22	7.1	7.50	28						
3	22	7.3	7.47	26	22	7.4	7.45	26				- 14		
4	23	45	7.21	عد	એ	نزج	723	22				- 50		
5	22	6.9	896	30	22	6.7	6.99	30	KAS					
6	22	6.9	7,56	21	22	6.9	7.48	28						
7	32	6.9	7,27	36	22	6.8	7.26	27						
8	21	7.4	6.79	28	21	7.3	7.15	30						
9	<u>ચા</u>	5.8	735	તેશ	al	5 9	7.28	29						
10	21	6.1	7.57	28	a۱	6.0	7.29	29	Cd					
# ALIVE		14				8								

Ammonia values on Day 0 were measured on the porewater. Ammonia on Days 5 and 10 were measured on the overlying water.

Appendices B-1, C, C-1, C-2, C-3, and C-4 (pages 45-100) are available in a separate file (size: 4.3 MB)

Click here to view.

Appendices D and E-1 (pages 101-157) are available in a separate file (size: 4.3 MB)

Click here to view.

Appendix E-1 Tables and Figures, and Appendix E-2 (pages 158-220) are available in a separate file (size: 5.0 MB)

Click here to view.